Fiorucci Sébastien, Golebiowski Jerôme, Cabrol-Bass Daniel, Antonczak Serge
Laboratoire Arômes, Synthèses, Interactions, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice 2, France.
Chemphyschem. 2004 Nov 12;5(11):1726-33. doi: 10.1002/cphc.200400186.
Flavonoids are naturally occurring phenol derivatives present in substantial amounts in a large variety of plants, fruits and vegetables daily eaten by humans. Most of these compounds exhibit several interesting biological activities, such as antiradical and antioxidant actions. Indeed, by complexation with specific enzymes, flavonoids are notably liable to metabolize molecular dioxygen. On the basis of experimental results describing oxygenolysis of the flavonoid quercetin, activated by the enzyme quercetin 2,3-dioxygenase (2,3-QD),ur attention has focused on the role of metal center in the activation of the substrate quercetin. Thus, in the present study, by means of DFT calculations at the B3LYP/ 6-31(+)G* level on model molecular systems, we describe different mechanisms for dioxygen metabolization by quercetin. Stationary points are described, and energetic and structural analyses along the reaction paths are reported. Our calculations show that the copper cation must act as an oxidant towards the substrate and that the reaction proceeds through a 1,3-cycloaddition.
黄酮类化合物是天然存在的酚类衍生物,大量存在于人类日常食用的多种植物、水果和蔬菜中。这些化合物大多具有多种有趣的生物活性,如抗自由基和抗氧化作用。实际上,通过与特定酶络合,黄酮类化合物特别容易使分子态双氧发生代谢。基于描述由槲皮素2,3 -双加氧酶(2,3 - QD)激活的黄酮类化合物槲皮素的氧解作用的实验结果,我们的注意力集中在金属中心在底物槲皮素激活中的作用上。因此,在本研究中,通过在模型分子体系上采用B3LYP / 6 - 31(+)G*水平的密度泛函理论(DFT)计算,我们描述了槲皮素使双氧发生代谢的不同机制。描述了驻点,并报告了沿反应路径的能量和结构分析。我们的计算表明,铜阳离子必须作为底物的氧化剂起作用,并且反应通过1,3 -环加成进行。