Suppr超能文献

划分-编辑-计数:条件概率判断中的朴素外延推理

Partition-edit-count: naive extensional reasoning in judgment of conditional probability.

作者信息

Fox Craig R, Levav Jonathan

机构信息

Fuqua School of Business, Duke University, USA.

出版信息

J Exp Psychol Gen. 2004 Dec;133(4):626-42. doi: 10.1037/0096-3445.133.4.626.

Abstract

The authors provide evidence that people typically evaluate conditional probabilities by subjectively partitioning the sample space into n interchangeable events, editing out events that can be eliminated on the basis of conditioning information, counting remaining events, then reporting probabilities as a ratio of the number of focal to total events. Participants' responses to conditional probability problems were influenced by irrelevant information (Study 1), small variations in problem wording (Study 2), and grouping of events (Study 3), as predicted by the partition-edit-count model. Informal protocol analysis also supports the authors' interpretation. A 4th study extends this account from situations where events are treated as interchangeable (chance and ignorance) to situations where participants have information they can use to distinguish among events (uncertainty).

摘要

作者提供的证据表明,人们通常通过主观地将样本空间划分为n个可互换的事件来评估条件概率,剔除基于条件信息可排除的事件,计算剩余事件,然后将概率报告为焦点事件数与总事件数的比率。正如划分-编辑-计数模型所预测的那样,参与者对条件概率问题的回答受到无关信息(研究1)、问题措辞的微小变化(研究2)和事件分组(研究3)的影响。非正式的协议分析也支持作者的解释。第四项研究将这一解释从事件被视为可互换的情况(机会和无知)扩展到参与者拥有可用于区分事件的信息的情况(不确定性)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验