Suppr超能文献

对事件发生时间数据的缺失值进行建模:骨质疏松症的一个案例研究。

Modeling missingness for time-to-event data: a case study in osteoporosis.

作者信息

Neuenschwander Beat, Branson Michael

机构信息

Novartis Pharma AG, Basel, Switzerland.

出版信息

J Biopharm Stat. 2004 Nov;14(4):1005-19. doi: 10.1081/BIP-200035478.

Abstract

Clinical trials of long duration are often hampered by high dropout rates, making statistical inference and interpretation of results difficult. Statistical inference should be based on models selected according to whether missingness is independent of response [missing completely at random (MCAR)], or depends on response either through observed responses only [missing at random (MAR)] or through unobserved responses [nonignorable missing (NIM)]. If the dropout rate is high and little is known about the dropout mechanism, plausible nonignorable missing scenarios should be investigated as a sensitivity tool, offering the data analyst an understanding of the robustness of conclusions. Modeling missingness is illustrated by an analysis of an interval censored time-to-event outcome from a 5-year clinical trial on fracture response in osteoporosis in which the overall dropout rate was substantial. In this article, we provide an overview of a reanalysis accounting for possible nonignorable missingness, emphasize the importance of modeling the dropout and response mechanisms jointly, and highlight critical points arising in missing data problems.

摘要

长期临床试验常常受到高失访率的阻碍,使得结果的统计推断和解释变得困难。统计推断应基于根据缺失情况是否与反应独立(完全随机缺失,MCAR)来选择的模型,或者缺失是否仅通过观察到的反应(随机缺失,MAR)或未观察到的反应(不可忽略缺失,NIM)依赖于反应。如果失访率很高且对失访机制了解甚少,则应将合理的不可忽略缺失情况作为一种敏感性工具进行研究,让数据分析人员了解结论的稳健性。通过对一项为期5年的骨质疏松症骨折反应临床试验中的区间删失生存结局进行分析来说明对缺失情况进行建模,该试验的总体失访率很高。在本文中,我们概述了考虑可能的不可忽略缺失情况的重新分析,强调联合对失访和反应机制进行建模的重要性,并突出了缺失数据问题中出现的关键点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验