Song James X
Global Biometry, Bayer HealthCare, Pharma Division, West Haven, CT 06460, USA.
Pharm Stat. 2006 Oct-Dec;5(4):295-304. doi: 10.1002/pst.233.
In the longitudinal studies with binary response, it is often of interest to estimate the percentage of positive responses at each time point and the percentage of having at least one positive response by each time point. When missing data exist, the conventional method based on observed percentages could result in erroneous estimates. This study demonstrates two methods of using expectation-maximization (EM) and data augmentation (DA) algorithms in the estimation of the marginal and cumulative probabilities for incomplete longitudinal binary response data. Both methods provide unbiased estimates when the missingness mechanism is missing at random (MAR) assumption. Sensitivity analyses have been performed for cases when the MAR assumption is in question.
在具有二元响应的纵向研究中,通常有兴趣估计每个时间点的阳性反应百分比以及每个时间点至少有一次阳性反应的百分比。当存在缺失数据时,基于观察到的百分比的传统方法可能会导致错误的估计。本研究展示了两种使用期望最大化(EM)和数据扩充(DA)算法来估计不完整纵向二元响应数据的边际概率和累积概率的方法。当缺失机制为随机缺失(MAR)假设时,这两种方法都能提供无偏估计。对于MAR假设存疑的情况,已经进行了敏感性分析。