Suppr超能文献

Early postdenervation depolarization develops faster at endplates of hibernating golden hamsters where spontaneous quantal and non-quantal acetylcholine release is very small.

作者信息

Moravec Jan, Vyskocil Frantisek

机构信息

Department of Animal Physiology and Developmental Biology, Charles University, Vinicná 7, Prague-2, Czech Republic.

出版信息

Neurosci Res. 2005 Jan;51(1):25-9. doi: 10.1016/j.neures.2004.09.003.

Abstract

The hyperpolarization produced by the application of curare to the postsynaptic membrane of the diaphragm neuromuscular synapse (H-effect) is a measure of non-quantal release (NQR) of acetylcholine (ACh) from the motor nerve ending. In mouse diaphragm, H-effect was 9.3 mV, significantly lower in awake hamsters (7.1 mV) and very small (1.1 mV) in hibernating hamsters. Also, the initial resting membrane potential (RMP) after dissection was highest in mouse (81.5 mV, inside negative), significantly smaller in awake hamsters (77.9 mV) and lowest in hibernating hamsters (75.1 mV). The early postdenervation depolarization of muscle fiber RMP to about 66-68 mV developed with half-decay time (T1/2) of 120 min in mouse, more rapidly in active hamsters (T1/2=60 min) and even faster in hibernating hamsters (T1/2=25 min) muscles. This reciprocal correlation between the H-effect and the rate of early depolarization indicates that non-quantal release is important for maintaining the resting membrane potential [Vyskocil, F. 2003. Early postdenervation depolarization is controlled by acetylcholine and glutamate via nitric oxide regulation of the chloride transporter. Neurochem. Res. 28, 575-585]. The amplitude of H-effect in mouse and hamster was proportional to the spontaneous quantal release. The frequency of miniature endplate potentials was highest in mouse (1.6 s-1), much smaller in awake hamsters (0.51 s-1) and very small in hibernating hamsters (0.08 s-1). This is in accordance with the idea that non-quantal release depends on the number of vesicles fused with the presynaptic membrane during quantal release [Edwards et al., 1985; Ferguson, S.M., Savchenko, V., Apparsundaram, S., Zwick, M., Wright J., Heilman, C.J., Yi, H., Levey, A.I., Blakely R.D. Vesicular localization and activity-dependent trafficking of presynaptic choline transporters. J. Neurosci. 23 (2003) 9697-9709].

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验