Suppr超能文献

对肠细胞微绒毛中细胞骨架动力学的双光子荧光恢复后光漂白分析。

A two-photon FRAP analysis of the cytoskeleton dynamics in the microvilli of intestinal cells.

作者信息

Waharte François, Brown Claire M, Coscoy Sylvie, Coudrier Evelyne, Amblard François

机构信息

Physico-Chimie Curie, UMR 168, Institut Curie, Paris, France.

出版信息

Biophys J. 2005 Feb;88(2):1467-78. doi: 10.1529/biophysj.104.049619. Epub 2004 Dec 13.

Abstract

The molecular structure of the brush-border of enterocytes has been investigated since the 1980s, but the dynamics of this highly specialized subcellular domain have been difficult to study due to its small size. To perform a detailed analysis of the dynamics of cytoskeleton proteins in this domain, we developed two-photon fluorescence recovery after photobleaching and a theoretical framework for data analysis. With this method, fast dynamics of proteins in the microvilli of the brush border of epithelial intestinal cells can be measured on the millisecond timescale in volumes smaller than 1 microm3. Two major proteins of the cytoskeleton of the microvilli, actin and myosin 1a (Myo1a; formerly named brush border myosin I), are mobile in the brush-border of Caco-2 cells, an enterocyte-like cellular model. However, the mobility of actin is very different from that of Myo1a and they appear to be unrelated (diffusion coefficient of 15 microm2 s(-1) with a mobile fraction of 60% for actin, and 4 microm2 s(-1) with a mobile fraction of 90% for Myo1a). Furthermore, we show for the first time, in vivo, that the dynamics of Myo1a in microvilli reflect its motor activity.

摘要

自20世纪80年代以来,人们一直在研究肠上皮细胞刷状缘的分子结构,但由于其尺寸小,这个高度特化的亚细胞结构域的动力学一直难以研究。为了对该结构域中细胞骨架蛋白的动力学进行详细分析,我们开发了双光子光漂白后荧光恢复技术以及数据分析的理论框架。通过这种方法,可以在小于1立方微米的体积内,以毫秒为时间尺度测量上皮肠细胞刷状缘微绒毛中蛋白质的快速动力学。微绒毛细胞骨架的两种主要蛋白质,肌动蛋白和肌球蛋白1a(Myo1a;以前称为刷状缘肌球蛋白I),在类似肠上皮细胞的Caco-2细胞模型的刷状缘中是可移动的。然而,肌动蛋白的移动性与Myo1a的移动性非常不同,它们似乎没有关联(肌动蛋白的扩散系数为15平方微米每秒,移动部分为60%;Myo1a的扩散系数为4平方微米每秒,移动部分为90%)。此外,我们首次在体内表明,微绒毛中Myo1a的动力学反映了其运动活性。

相似文献

1
A two-photon FRAP analysis of the cytoskeleton dynamics in the microvilli of intestinal cells.
Biophys J. 2005 Feb;88(2):1467-78. doi: 10.1529/biophysj.104.049619. Epub 2004 Dec 13.
2
Differential localization and dynamics of class I myosins in the enterocyte microvillus.
Mol Biol Cell. 2010 Mar 15;21(6):970-8. doi: 10.1091/mbc.e09-07-0638. Epub 2010 Jan 20.
3
Myosin-1A targets to microvilli using multiple membrane binding motifs in the tail homology 1 (TH1) domain.
J Biol Chem. 2012 Apr 13;287(16):13104-15. doi: 10.1074/jbc.M111.336313. Epub 2012 Feb 24.
4
Dynamics and morphology of microvilli driven by actin polymerization.
Phys Rev Lett. 2006 Jul 7;97(1):018101. doi: 10.1103/PhysRevLett.97.018101. Epub 2006 Jul 5.
5
Shaping the intestinal brush border.
J Cell Biol. 2014 Nov 24;207(4):441-51. doi: 10.1083/jcb.201407015.
6
MYO1A (brush border myosin I) dynamics in the brush border of LLC-PK1-CL4 cells.
Biophys J. 2002 Apr;82(4):1869-83. doi: 10.1016/S0006-3495(02)75537-9.
8
Dynamics of brush border remodeling induced by enteropathogenic E. coli.
Gut Microbes. 2014 Jul 1;5(4):504-16. doi: 10.4161/gmic.32084. Epub 2014 Jul 30.

引用本文的文献

1
A protein diffusion model of the sealing effect.
Chem Eng Sci. 2009 Nov 16;64(22):4504-4514. doi: 10.1016/j.ces.2009.05.016. Epub 2009 May 20.
2
High-resolution dynamic mapping of the C. elegans intestinal brush border.
Development. 2021 Dec 1;148(23). doi: 10.1242/dev.200029. Epub 2021 Dec 10.
3
Bioengineering tools for probing intracellular events in T lymphocytes.
WIREs Mech Dis. 2021 Jul;13(4):e1510. doi: 10.1002/wsbm.1510. Epub 2020 Oct 19.
4
Profilin-Mediated Actin Allocation Regulates the Growth of Epithelial Microvilli.
Curr Biol. 2019 Oct 21;29(20):3457-3465.e3. doi: 10.1016/j.cub.2019.08.051. Epub 2019 Oct 10.
7
Characterization of Cell Boundary and Confocal Effects Improves Quantitative FRAP Analysis.
Biophys J. 2018 Mar 13;114(5):1153-1164. doi: 10.1016/j.bpj.2018.01.013.
9
Mechanosensitive Adaptation of E-Cadherin Turnover across adherens Junctions.
PLoS One. 2015 Jun 5;10(6):e0128281. doi: 10.1371/journal.pone.0128281. eCollection 2015.

本文引用的文献

1
Analysis of binding reactions by fluorescence recovery after photobleaching.
Biophys J. 2004 Jun;86(6):3473-95. doi: 10.1529/biophysj.103.026765.
2
Dynamics of the depletion zone at a finite-sized imperfect trap in two dimensions: photobleaching experiments and simulations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 1):061102. doi: 10.1103/PhysRevE.68.061102. Epub 2003 Dec 17.
3
Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope.
Biophys J. 2003 Oct;85(4):2240-52. doi: 10.1016/S0006-3495(03)74649-9.
4
Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching.
Biophys J. 2003 May;84(5):3353-63. doi: 10.1016/S0006-3495(03)70059-9.
5
Molecular analysis of microscopic ezrin dynamics by two-photon FRAP.
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12813-8. doi: 10.1073/pnas.192084599. Epub 2002 Sep 23.
6
MYO1A (brush border myosin I) dynamics in the brush border of LLC-PK1-CL4 cells.
Biophys J. 2002 Apr;82(4):1869-83. doi: 10.1016/S0006-3495(02)75537-9.
7
Truncated brush border myosin I affects membrane traffic in polarized epithelial cells.
Traffic. 2000 May;1(5):411-24. doi: 10.1034/j.1600-0854.2000.010506.x.
8
Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery.
Biophys J. 1999 Nov;77(5):2837-49. doi: 10.1016/S0006-3495(99)77115-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验