Suppr超能文献

细胞边界和共聚焦效应的特征改善了定量 FRAP 分析。

Characterization of Cell Boundary and Confocal Effects Improves Quantitative FRAP Analysis.

机构信息

Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts.

Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts.

出版信息

Biophys J. 2018 Mar 13;114(5):1153-1164. doi: 10.1016/j.bpj.2018.01.013.

Abstract

Fluorescence recovery after photobleaching (FRAP) is an important tool used by cell biologists to study the diffusion and binding kinetics of vesicles, proteins, and other molecules in the cytoplasm, nucleus, or cell membrane. Although many FRAP models have been developed over the past decades, the influence of the complex boundaries of 3D cellular geometries on the recovery curves, in conjunction with regions of interest and optical effects (imaging, photobleaching, photoswitching, and scanning), has not been well studied. Here, we developed a 3D computational model of the FRAP process that incorporates particle diffusion, cell boundary effects, and the optical properties of the scanning confocal microscope, and validated this model using the tip-growing cells of Physcomitrella patens. We then show how these cell boundary and optical effects confound the interpretation of FRAP recovery curves, including the number of dynamic states of a given fluorophore, in a wide range of cellular geometries-both in two and three dimensions-namely nuclei, filopodia, and lamellipodia of mammalian cells, and in cell types such as the budding yeast, Saccharomyces pombe, and tip-growing plant cells. We explored the performance of existing analytical and algorithmic FRAP models in these various cellular geometries, and determined that the VCell VirtualFRAP tool provides the best accuracy to measure diffusion coefficients. Our computational model is not limited only to these cells types, but can easily be extended to other cellular geometries via the graphical Java-based application we also provide. This particle-based simulation-called the Digital Confocal Microscopy Suite or DCMS-can also perform fluorescence dynamics assays, such as number and brightness, fluorescence correlation spectroscopy, and raster image correlation spectroscopy, and could help shape the way these techniques are interpreted.

摘要

荧光漂白后恢复(FRAP)是细胞生物学家用来研究细胞质、核或细胞膜中囊泡、蛋白质和其他分子的扩散和结合动力学的重要工具。尽管在过去的几十年中已经开发出许多 FRAP 模型,但 3D 细胞几何形状的复杂边界对恢复曲线的影响,以及感兴趣区域和光学效应(成像、漂白、光开关和扫描)的影响,尚未得到很好的研究。在这里,我们开发了一个 FRAP 过程的 3D 计算模型,该模型结合了粒子扩散、细胞边界效应和扫描共聚焦显微镜的光学特性,并使用 Physcomitrella patens 的顶端生长细胞验证了该模型。然后,我们展示了这些细胞边界和光学效应如何混淆 FRAP 恢复曲线的解释,包括给定荧光团的动态状态数量,在广泛的细胞几何形状中,包括哺乳动物细胞的核、丝状伪足和片状伪足,以及出芽酵母、酿酒酵母和顶端生长植物细胞等细胞类型。我们还探索了现有的分析和算法 FRAP 模型在这些不同细胞几何形状中的性能,并确定 VCell VirtualFRAP 工具提供了测量扩散系数的最佳准确性。我们的计算模型不仅限于这些细胞类型,还可以通过我们提供的基于图形的 Java 应用程序轻松扩展到其他细胞几何形状。这个基于粒子的模拟称为数字共聚焦显微镜套件或 DCMS,还可以执行荧光动力学测定,如数量和亮度、荧光相关光谱和光栅图像相关光谱,并有助于塑造这些技术的解释方式。

相似文献

1
Characterization of Cell Boundary and Confocal Effects Improves Quantitative FRAP Analysis.
Biophys J. 2018 Mar 13;114(5):1153-1164. doi: 10.1016/j.bpj.2018.01.013.
3
Nanoclustering and heterogeneous membrane diffusion of Ras studied by FRAP and RICS analysis.
Methods Mol Biol. 2014;1120:307-26. doi: 10.1007/978-1-62703-791-4_20.
4
Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP).
Curr Protoc Cytom. 2012 Oct;Chapter 2:Unit2.19. doi: 10.1002/0471142956.cy0219s62.
5
Line FRAP with the confocal laser scanning microscope for diffusion measurements in small regions of 3-D samples.
Biophys J. 2007 Mar 15;92(6):2172-83. doi: 10.1529/biophysj.106.099838. Epub 2007 Jan 5.
8
Effects of organelle shape on fluorescence recovery after photobleaching.
Biophys J. 2005 Sep;89(3):1482-92. doi: 10.1529/biophysj.104.057885. Epub 2005 Jun 10.
9
Quantifying Molecular Dynamics within Complex Cellular Morphologies using LLSM-FRAP.
Small Methods. 2022 Jun;6(6):e2200149. doi: 10.1002/smtd.202200149. Epub 2022 Mar 28.

引用本文的文献

1
Beyond analytic solution: Analysis of FRAP experiments by spatial simulation of the forward problem.
Biophys J. 2023 Sep 19;122(18):3722-3737. doi: 10.1016/j.bpj.2023.06.013. Epub 2023 Jun 23.
2
What's past is prologue: FRAP keeps delivering 50 years later.
Biophys J. 2023 Sep 19;122(18):3577-3586. doi: 10.1016/j.bpj.2023.05.016. Epub 2023 May 22.
3
interactions between myosin XI, vesicles and filamentous actin are fast and transient in .
J Cell Sci. 2020 Feb 26;133(4):jcs234682. doi: 10.1242/jcs.234682.
4
The Trap in the FRAP: A Cautionary Tale about Transport Measurements in Biomolecular Condensates.
Biophys J. 2019 Dec 3;117(11):2041-2042. doi: 10.1016/j.bpj.2019.10.026. Epub 2019 Oct 25.
5
Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching.
Biophys J. 2019 Oct 1;117(7):1285-1300. doi: 10.1016/j.bpj.2019.08.030. Epub 2019 Aug 30.

本文引用的文献

1
On the Equivalence of FCS and FRAP: Simultaneous Lipid Membrane Measurements.
Biophys J. 2016 Jul 12;111(1):152-61. doi: 10.1016/j.bpj.2016.06.001.
3
Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice.
Q Rev Biophys. 2015 Aug;48(3):323-87. doi: 10.1017/S0033583515000013.
4
Universal Approach to FRAP Analysis of Arbitrary Bleaching Patterns.
Sci Rep. 2015 Jun 25;5:11655. doi: 10.1038/srep11655.
5
Dynamic regulation of a cell adhesion protein complex including CADM1 by combinatorial analysis of FRAP with exponential curve-fitting.
PLoS One. 2015 Mar 17;10(3):e0116637. doi: 10.1371/journal.pone.0116637. eCollection 2015.
7
Photoswitching-free FRAP analysis with a genetically encoded fluorescent tag.
PLoS One. 2014 Sep 18;9(9):e107730. doi: 10.1371/journal.pone.0107730. eCollection 2014.
8
Localization and mobility of synaptic vesicles in Myosin VI mutants of Drosophila.
PLoS One. 2014 Jul 25;9(7):e102988. doi: 10.1371/journal.pone.0102988. eCollection 2014.
9
Parameter importance in FRAP acquisition and analysis: a simulation approach.
Biophys J. 2013 May 7;104(9):2089-97. doi: 10.1016/j.bpj.2013.03.036.
10
Crumbs affects protein dynamics in anterior regions of the developing Drosophila embryo.
PLoS One. 2013;8(3):e58839. doi: 10.1371/journal.pone.0058839. Epub 2013 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验