Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts.
Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts.
Biophys J. 2018 Mar 13;114(5):1153-1164. doi: 10.1016/j.bpj.2018.01.013.
Fluorescence recovery after photobleaching (FRAP) is an important tool used by cell biologists to study the diffusion and binding kinetics of vesicles, proteins, and other molecules in the cytoplasm, nucleus, or cell membrane. Although many FRAP models have been developed over the past decades, the influence of the complex boundaries of 3D cellular geometries on the recovery curves, in conjunction with regions of interest and optical effects (imaging, photobleaching, photoswitching, and scanning), has not been well studied. Here, we developed a 3D computational model of the FRAP process that incorporates particle diffusion, cell boundary effects, and the optical properties of the scanning confocal microscope, and validated this model using the tip-growing cells of Physcomitrella patens. We then show how these cell boundary and optical effects confound the interpretation of FRAP recovery curves, including the number of dynamic states of a given fluorophore, in a wide range of cellular geometries-both in two and three dimensions-namely nuclei, filopodia, and lamellipodia of mammalian cells, and in cell types such as the budding yeast, Saccharomyces pombe, and tip-growing plant cells. We explored the performance of existing analytical and algorithmic FRAP models in these various cellular geometries, and determined that the VCell VirtualFRAP tool provides the best accuracy to measure diffusion coefficients. Our computational model is not limited only to these cells types, but can easily be extended to other cellular geometries via the graphical Java-based application we also provide. This particle-based simulation-called the Digital Confocal Microscopy Suite or DCMS-can also perform fluorescence dynamics assays, such as number and brightness, fluorescence correlation spectroscopy, and raster image correlation spectroscopy, and could help shape the way these techniques are interpreted.
荧光漂白后恢复(FRAP)是细胞生物学家用来研究细胞质、核或细胞膜中囊泡、蛋白质和其他分子的扩散和结合动力学的重要工具。尽管在过去的几十年中已经开发出许多 FRAP 模型,但 3D 细胞几何形状的复杂边界对恢复曲线的影响,以及感兴趣区域和光学效应(成像、漂白、光开关和扫描)的影响,尚未得到很好的研究。在这里,我们开发了一个 FRAP 过程的 3D 计算模型,该模型结合了粒子扩散、细胞边界效应和扫描共聚焦显微镜的光学特性,并使用 Physcomitrella patens 的顶端生长细胞验证了该模型。然后,我们展示了这些细胞边界和光学效应如何混淆 FRAP 恢复曲线的解释,包括给定荧光团的动态状态数量,在广泛的细胞几何形状中,包括哺乳动物细胞的核、丝状伪足和片状伪足,以及出芽酵母、酿酒酵母和顶端生长植物细胞等细胞类型。我们还探索了现有的分析和算法 FRAP 模型在这些不同细胞几何形状中的性能,并确定 VCell VirtualFRAP 工具提供了测量扩散系数的最佳准确性。我们的计算模型不仅限于这些细胞类型,还可以通过我们提供的基于图形的 Java 应用程序轻松扩展到其他细胞几何形状。这个基于粒子的模拟称为数字共聚焦显微镜套件或 DCMS,还可以执行荧光动力学测定,如数量和亮度、荧光相关光谱和光栅图像相关光谱,并有助于塑造这些技术的解释方式。