Suppr超能文献

浮萍中的硫饥饿会导致核酮糖-1,5-二磷酸羧化酶降解,但植物不会死亡。

Sulfur starvation in Lemna leads to degradation of ribulose-bisphosphate carboxylase without plant death.

作者信息

Ferreira R M, Teixeira A R

机构信息

Departamento de Botânica e Engenharia Biológica, Instituto Superior de Agronomia, Lisboa, Portugal.

出版信息

J Biol Chem. 1992 Apr 15;267(11):7253-7.

PMID:1559969
Abstract

Little is known about the degradation of the most abundant protein in nature, ribulose-bisphosphate carboxylase (RuBP carboxylase, EC 4.1.1.39), probably reflecting the fact that no stress situation has been identified capable of causing extensive RuBP carboxylase degradation without causing the death of the plant. We have subjected plants of Lemna minor L. to a variety of stress situations, nutritive deficiencies in particular, and have found a single condition--sulfur starvation--that caused almost complete degradation of RuBP carboxylase without causing plant death. Moreover, the enzyme was preferentially degraded under these conditions. However, when the plants were deprived of calcium, no RuBP carboxylase degradation was observed. Instead, the enzyme was oxidized and polymerized into high molecular mass aggregates. On the other hand, RuBP carboxylase shows an extreme stability when Lemna is deprived of some macronutrients (e.g. nitrogen, phosphorus, potassium, and magnesium) probably reflecting that this plant had to evolve in a way to cope with frequent shortages of such elements. The implications of these data for the role of RuBP carboxylase as a leaf storage protein are discussed.

摘要

关于自然界中最丰富的蛋白质——核酮糖-1,5-二磷酸羧化酶(RuBP羧化酶,EC 4.1.1.39)的降解情况,人们了解甚少,这可能反映出一个事实:尚未发现任何一种胁迫情况能够在不导致植物死亡的前提下,引起RuBP羧化酶的大量降解。我们让小浮萍(Lemna minor L.)植株经受了多种胁迫情况,尤其是营养缺乏,结果发现有一种情况——硫饥饿——能导致RuBP羧化酶几乎完全降解,且不会造成植物死亡。此外,在这些条件下,该酶会被优先降解。然而,当植株缺钙时,未观察到RuBP羧化酶的降解。相反,该酶被氧化并聚合成高分子量聚集体。另一方面,当小浮萍缺乏某些大量营养素(如氮、磷、钾和镁)时,RuBP羧化酶表现出极高的稳定性,这可能反映出这种植物必须以某种方式进化,以应对此类元素的频繁短缺。本文讨论了这些数据对于RuBP羧化酶作为叶片储存蛋白的作用的意义。

相似文献

4
Evidence for a carbanion intermediate in catalysis by spinach ribulose-1,5-bisphosphate carboxylase/oxygenase.
Arch Biochem Biophys. 1983 Jun;223(2):604-9. doi: 10.1016/0003-9861(83)90624-0.
6
Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation.
Biochem J. 1996 Aug 15;318 ( Pt 1)(Pt 1):227-34. doi: 10.1042/bj3180227.
10
Species variation in kinetic properties of ribulose 1,5-bisphosphate carboxylase/oxygenase.
Arch Biochem Biophys. 1983 Dec;227(2):425-33. doi: 10.1016/0003-9861(83)90472-1.

引用本文的文献

2
Age-Specific Physiological Adjustments of to Sulfur Deficiency.
Plants (Basel). 2025 Jun 20;14(13):1907. doi: 10.3390/plants14131907.
3
Role of ClpP in the Biogenesis and Degradation of RuBisCO and ATP Synthase in .
Plants (Basel). 2019 Jun 26;8(7):191. doi: 10.3390/plants8070191.
4
Integrative Transcriptomic Analysis Uncovers Novel Gene Modules That Underlie the Sulfate Response in .
Front Plant Sci. 2018 Apr 10;9:470. doi: 10.3389/fpls.2018.00470. eCollection 2018.
5
Is RAF1 protein from Synechocystis sp. PCC 6803 really needed in the cyanobacterial Rubisco assembly process?
Photosynth Res. 2017 May;132(2):135-148. doi: 10.1007/s11120-017-0336-4. Epub 2017 Jan 20.
6
Influence of Sulfur Induced Stress on Oxidative Status and Antioxidative Machinery in Leaves of Allium cepa L.
Int Sch Res Notices. 2014 Oct 29;2014:568081. doi: 10.1155/2014/568081. eCollection 2014.
7
The significance of glucosinolates for sulfur storage in Brassicaceae seedlings.
Front Plant Sci. 2014 Dec 19;5:704. doi: 10.3389/fpls.2014.00704. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验