Henríquez-Valencia Carlos, Arenas-M Anita, Medina Joaquín, Canales Javier
Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile.
Front Plant Sci. 2018 Apr 10;9:470. doi: 10.3389/fpls.2018.00470. eCollection 2018.
Sulfur is an essential nutrient for plant growth and development. Sulfur is a constituent of proteins, the plasma membrane and cell walls, among other important cellular components. To obtain new insights into the gene regulatory networks underlying the sulfate response, we performed an integrative meta-analysis of transcriptomic data from five different sulfate experiments available in public databases. This bioinformatic approach allowed us to identify a robust set of genes whose expression depends only on sulfate availability, indicating that those genes play an important role in the sulfate response. In relation to sulfate metabolism, the biological function of approximately 45% of these genes is currently unknown. Moreover, we found several consistent Gene Ontology terms related to biological processes that have not been extensively studied in the context of the sulfate response; these processes include cell wall organization, carbohydrate metabolism, nitrogen compound transport, and the regulation of proteolysis. Gene co-expression network analyses revealed relationships between the sulfate-responsive genes that were distributed among seven function-specific co-expression modules. The most connected genes in the sulfate co-expression network belong to a module related to the carbon response, suggesting that this biological function plays an important role in the control of the sulfate response. Temporal analyses of the network suggest that sulfate starvation generates a biphasic response, which involves that major changes in gene expression occur during both the early and late responses. Network analyses predicted that the sulfate response is regulated by a limited number of transcription factors, including MYBs, bZIPs, and NF-YAs. In conclusion, our analysis identified new candidate genes and provided new hypotheses to advance our understanding of the transcriptional regulation of sulfate metabolism in plants.
硫是植物生长发育所必需的营养元素。硫是蛋白质、质膜和细胞壁等重要细胞成分的组成部分。为了深入了解硫酸盐响应背后的基因调控网络,我们对公共数据库中五个不同硫酸盐实验的转录组数据进行了综合荟萃分析。这种生物信息学方法使我们能够确定一组强大的基因,其表达仅取决于硫酸盐的可用性,这表明这些基因在硫酸盐响应中起重要作用。关于硫酸盐代谢,目前约45%的这些基因的生物学功能尚不清楚。此外,我们发现了几个与生物学过程相关的一致基因本体术语,这些过程在硫酸盐响应的背景下尚未得到广泛研究;这些过程包括细胞壁组织、碳水化合物代谢、氮化合物转运和蛋白水解的调节。基因共表达网络分析揭示了分布在七个功能特异性共表达模块中的硫酸盐响应基因之间的关系。硫酸盐共表达网络中连接最多的基因属于一个与碳响应相关的模块,这表明这种生物学功能在硫酸盐响应的控制中起重要作用。网络的时间分析表明,硫酸盐饥饿会产生双相响应,这涉及到基因表达在早期和晚期响应中都会发生重大变化。网络分析预测,硫酸盐响应受包括MYB、bZIP和NF-YA在内的有限数量转录因子的调控。总之,我们的分析确定了新的候选基因,并提供了新的假设,以促进我们对植物硫酸盐代谢转录调控的理解。