Colley K J, Lee E U, Paulson J C
Department of Biological Chemistry, UCLA School of Medicine 90024.
J Biol Chem. 1992 Apr 15;267(11):7784-93.
The beta-galactoside alpha 2,6-sialyltransferase has been localized to the trans cisternae of the Golgi apparatus and the trans Golgi network where it transfers sialic acid residues to terminal positions on N-linked oligosaccharides. It is a type II transmembrane protein possessing a 9-amino acid amino-terminal cytoplasmic tail, a 17-amino acid signal anchor domain, and a 35-amino acid stem region which tethers the large luminal catalytic domain to the membrane anchor. Previous work has demonstrated that the soluble sialytransferase catalytic domain is rapidly secreted from Chinese hamster ovary cells. These results suggest that the signals for Golgi apparatus localization do not reside in the catalytic domain of the enzyme but must reside in the cytoplasmic tail, signal anchor domain, and/or stem region. To determine which amino-terminal regions are required for Golgi apparatus localization, mutant sialyltransferase proteins were constructed by in vitro oligonucleotide-directed mutagenesis, expressed in Cos-1 cells, and localized by indirect immunofluorescence microscopy. Signal cleavage-sialyltransferase mutants which consist of only the stem and catalytic domain of the enzyme are not rapidly secreted but are retained intracellularly and predominantly localized to the Golgi apparatus. However, deletion of either the stem region or the cytoplasmic tail of the membrane-bound sialyltransferase does not alter its Golgi apparatus localization. In addition, sequential replacement of the amino acids of the sialyltransferase signal anchor domain with amino acids from the signal anchor domain of a plasma membrane protein, the influenza virus neuraminidase does not alter the Golgi apparatus localization of the sialyltransferase. These observations suggest that sequences in the signal anchor region and stem region allow the Golgi apparatus localization of the membrane-bound and soluble forms of the sialytransferase, respectively, and that both regions may contain Golgi apparatus localization signals.
β-半乳糖苷α2,6-唾液酸转移酶定位于高尔基体的反式潴泡和反式高尔基体网络,在那里它将唾液酸残基转移到N-连接寡糖的末端位置。它是一种II型跨膜蛋白,具有一个9个氨基酸的氨基末端胞质尾巴、一个17个氨基酸的信号锚定结构域和一个35个氨基酸的茎区,该茎区将大的腔内催化结构域与膜锚定连接起来。先前的研究表明,可溶性唾液酸转移酶催化结构域可从中国仓鼠卵巢细胞中快速分泌。这些结果表明,高尔基体定位信号并不存在于该酶的催化结构域中,而必定存在于胞质尾巴、信号锚定结构域和/或茎区中。为了确定高尔基体定位需要哪些氨基末端区域,通过体外寡核苷酸定向诱变构建了突变唾液酸转移酶蛋白,在Cos-1细胞中表达,并通过间接免疫荧光显微镜进行定位。仅由该酶的茎区和催化结构域组成的信号切割-唾液酸转移酶突变体不会快速分泌,而是保留在细胞内并主要定位于高尔基体。然而,膜结合唾液酸转移酶的茎区或胞质尾巴的缺失并不改变其高尔基体定位。此外,用质膜蛋白流感病毒神经氨酸酶的信号锚定结构域中的氨基酸依次替换唾液酸转移酶信号锚定结构域中的氨基酸,并不会改变唾液酸转移酶的高尔基体定位。这些观察结果表明,信号锚定区和茎区中的序列分别允许膜结合型和可溶性唾液酸转移酶定位于高尔基体,并且这两个区域可能都包含高尔基体定位信号。