Suppr超能文献

唾液酸在血细胞生成、分化和周转中的调节作用。

Sialic acid in the regulation of blood cell production, differentiation and turnover.

机构信息

Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.

出版信息

Immunology. 2024 Aug;172(4):517-532. doi: 10.1111/imm.13780. Epub 2024 Mar 19.

Abstract

Sialic acid is a unique sugar moiety that resides in the distal and most accessible position of the glycans on mammalian cell surface and extracellular glycoproteins and glycolipids. The potential for sialic acid to obscure underlying structures has long been postulated, but the means by which such structural changes directly affect biological processes continues to be elucidated. Here, we appraise the growing body of literature detailing the importance of sialic acid for the generation, differentiation, function and death of haematopoietic cells. We conclude that sialylation is a critical post-translational modification utilized in haematopoiesis to meet the dynamic needs of the organism by enforcing rapid changes in availability of lineage-specific cell types. Though long thought to be generated only cell-autonomously within the intracellular ER-Golgi secretory apparatus, emerging data also demonstrate previously unexpected diversity in the mechanisms of sialylation. Emphasis is afforded to the mechanism of extrinsic sialylation, whereby extracellular enzymes remodel cell surface and extracellular glycans, supported by charged sugar donor molecules from activated platelets.

摘要

唾液酸是一种独特的糖基部分,位于哺乳动物细胞表面和细胞外糖蛋白和糖脂聚糖的远端和最易接近的位置。长期以来,人们一直假设唾液酸有可能掩盖潜在的结构,但这种结构变化如何直接影响生物过程仍在阐明之中。在这里,我们评估了越来越多的文献,这些文献详细说明了唾液酸对于造血细胞的生成、分化、功能和死亡的重要性。我们的结论是,唾液酸化是造血过程中的一个关键的翻译后修饰,通过在特定谱系细胞类型的可用性上施加快速变化来满足生物体的动态需求。尽管长期以来人们认为唾液酸仅在细胞内的内质网-高尔基体分泌装置中自主产生,但新出现的数据也表明唾液酸化的机制具有以前未曾预料到的多样性。重点介绍了外在唾液酸化的机制,即细胞外酶重塑细胞表面和细胞外聚糖,由激活的血小板提供带电荷的糖供体分子支持。

相似文献

1
Sialic acid in the regulation of blood cell production, differentiation and turnover.
Immunology. 2024 Aug;172(4):517-532. doi: 10.1111/imm.13780. Epub 2024 Mar 19.
3
Sialylated glycoproteins bind to Siglec-9 in a cis manner on platelets to suppress platelet activation.
J Thromb Haemost. 2025 Jul;23(7):2270-2283. doi: 10.1016/j.jtha.2025.03.027. Epub 2025 Apr 7.
4
α2,6-linked sialic acid serves as a high-affinity receptor for cancer oncolytic virotherapy with Newcastle disease virus.
J Cancer Res Clin Oncol. 2017 Nov;143(11):2171-2181. doi: 10.1007/s00432-017-2470-y. Epub 2017 Jul 7.
5
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
8
The role of carbohydrate recognition during human sperm-egg binding.
Hum Reprod. 2013 Mar;28(3):566-77. doi: 10.1093/humrep/des447. Epub 2013 Jan 12.
9
Understanding the Glycosylation Pathways Involved in the Biosynthesis of the Sulfated Glycan Ligands for Siglecs.
ACS Chem Biol. 2025 Feb 21;20(2):386-400. doi: 10.1021/acschembio.4c00677. Epub 2025 Jan 21.

引用本文的文献

1
A novel sialylation pathway mediated by extracellular vesicles in aggressive prostate cancer.
PLoS One. 2025 Sep 12;20(9):e0329014. doi: 10.1371/journal.pone.0329014. eCollection 2025.
2
Insights on the Role of Sialic Acids in Acute Lymphoblastic Leukemia in Children.
Int J Mol Sci. 2025 Mar 1;26(5):2233. doi: 10.3390/ijms26052233.
3
Targeting Non-Eosinophilic Immunological Pathways in COPD and AECOPD: Current Insights and Therapeutic Strategies.
Int J Chron Obstruct Pulmon Dis. 2025 Mar 5;20:511-532. doi: 10.2147/COPD.S506616. eCollection 2025.
4
When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression.
Front Oncol. 2024 Nov 19;14:1487306. doi: 10.3389/fonc.2024.1487306. eCollection 2024.

本文引用的文献

1
Platelet-localized ST6Gal1 does not impact IgG sialylation.
Glycobiology. 2023 Dec 25;33(11):943-953. doi: 10.1093/glycob/cwad052.
2
CD169-CD43 interaction is involved in erythroblastic island formation and erythroid differentiation.
Haematologica. 2023 Aug 1;108(8):2205-2217. doi: 10.3324/haematol.2022.282192.
3
-acetylglucosaminyltransferase-V (GnT-V)-enriched small extracellular vesicles mediate -glycan remodeling in recipient cells.
iScience. 2022 Dec 6;26(1):105747. doi: 10.1016/j.isci.2022.105747. eCollection 2023 Jan 20.
4
Neuraminidase is a host-directed approach to regulate neutrophil responses in sepsis and COVID-19.
Br J Pharmacol. 2023 Jun;180(11):1460-1481. doi: 10.1111/bph.16013. Epub 2023 Jan 13.
6
ST6Gal1: Oncogenic signaling pathways and targets.
Front Mol Biosci. 2022 Aug 29;9:962908. doi: 10.3389/fmolb.2022.962908. eCollection 2022.
7
Siglec receptors as new immune checkpoints in cancer.
Mol Aspects Med. 2023 Apr;90:101112. doi: 10.1016/j.mam.2022.101112. Epub 2022 Aug 7.
8
ST6Gal1 in plasma is dispensable for IgG sialylation.
Glycobiology. 2022 Aug 18;32(9):803-813. doi: 10.1093/glycob/cwac039.
9
Divergent Golgi trafficking limits B cell-mediated IgG sialylation.
J Leukoc Biol. 2022 Dec;112(6):1555-1566. doi: 10.1002/JLB.3MA0522-731R. Epub 2022 Jun 21.
10
Extracellular sialyltransferase st6gal1 in breast tumor cell growth and invasiveness.
Cancer Gene Ther. 2022 Nov;29(11):1662-1675. doi: 10.1038/s41417-022-00485-y. Epub 2022 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验