Suppr超能文献

在向同龄人学习语言的过程中“赢则坚持,输则改变”。

Win-stay, lose-shift in language learning from peers.

作者信息

Matsen Frederick A, Nowak Martin A

机构信息

Program for Evolutionary Dynamics, Department of Mathematics, Harvard University, One Brattle Square, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18053-7. doi: 10.1073/pnas.0406608102. Epub 2004 Dec 16.

Abstract

Traditional language learning theory explores an idealized interaction between a teacher and a learner. The teacher provides sentences from a language, while the learner has to infer the underlying grammar. Here, we study a new approach by considering a population of individuals that learn from each other. There is no designated teacher. We are inspired by the observation that children grow up to speak the language of their peers, not of their parents. Our goal is to characterize learning strategies that generate "linguistic coherence," which means that most individuals use the same language. We model the resulting learning dynamics as a random walk of a population on a graph. Each vertex represents a candidate language. We find that a simple strategy using a certain aspiration level with the principle of win-stay, lose-shift does extremely well: stay with your current language, if at least three others use that language; otherwise, shift to an adjacent language on the graph. This strategy guarantees linguistic coherence on all nearly regular graphs, in the relevant limit where the number of candidate languages is much greater than the population size. Moreover, for many graphs, it is sufficient to have an aspiration level demanding only two other individuals to use the same language.

摘要

传统语言学习理论探讨了教师与学习者之间理想化的互动。教师提供某种语言的句子,而学习者必须推断其背后的语法。在此,我们通过考虑一群相互学习的个体来研究一种新方法。这里没有指定的教师。我们受到这样一种观察结果的启发,即儿童长大后说的是同龄人而非父母的语言。我们的目标是刻画能够产生“语言一致性”的学习策略,这意味着大多数个体使用相同的语言。我们将由此产生的学习动态建模为群体在图上的随机游走。每个顶点代表一种候选语言。我们发现,一种使用特定期望水平并遵循赢则保留、输则转换原则的简单策略表现极佳:如果至少有其他三人使用你当前的语言,那就继续使用;否则,转换到图上相邻的一种语言。在候选语言数量远大于群体规模的相关极限情况下,该策略能保证在所有近乎正则的图上实现语言一致性。此外,对于许多图而言,期望水平仅要求有另外两人使用相同的语言就足够了。

相似文献

1
Win-stay, lose-shift in language learning from peers.在向同龄人学习语言的过程中“赢则坚持,输则改变”。
Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18053-7. doi: 10.1073/pnas.0406608102. Epub 2004 Dec 16.
5
The evolutionary dynamics of grammar acquisition.语法习得的进化动态学。
J Theor Biol. 2001 Mar 7;209(1):43-59. doi: 10.1006/jtbi.2000.2240.
6
The interpretation of disjunction in universal grammar.普遍语法中析取的解释
Lang Speech. 2008;51(Pt 1-2):151-69. doi: 10.1177/00238309080510010901.
9
Eliminating unpredictable variation through iterated learning.通过迭代学习消除不可预测的变化。
Cognition. 2010 Sep;116(3):444-9. doi: 10.1016/j.cognition.2010.06.004. Epub 2010 Jul 7.
10
Evolution of universal grammar.普遍语法的演变。
Science. 2001 Jan 5;291(5501):114-8. doi: 10.1126/science.291.5501.114.

本文引用的文献

2
Evolving grounded communication for robots.为机器人发展有扎实基础的通信。
Trends Cogn Sci. 2003 Jul;7(7):308-312. doi: 10.1016/s1364-6613(03)00129-3.
3
Language dynamics in finite populations.有限群体中的语言动态。
J Theor Biol. 2003 Apr 7;221(3):445-57. doi: 10.1006/jtbi.2003.3199.
4
Computational and evolutionary aspects of language.语言的计算与进化方面
Nature. 2002 Jun 6;417(6889):611-7. doi: 10.1038/nature00771.
6
Evolution of universal grammar.普遍语法的演变。
Science. 2001 Jan 5;291(5501):114-8. doi: 10.1126/science.291.5501.114.
7
The evolution of syntactic communication.句法交流的演变
Nature. 2000 Mar 30;404(6777):495-8. doi: 10.1038/35006635.
8
The evolution of language.语言的演变。
Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8028-33. doi: 10.1073/pnas.96.14.8028.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验