School of Economics, Zhengzhou University of Aeronautics, Zhengzhou, China.
BMC Ecol Evol. 2021 Aug 4;21(1):152. doi: 10.1186/s12862-021-01847-0.
In recent years, the average abundance function has attracted much attention as it reflects the degree of cooperation in the population. Then it is significant to analyse how average abundance functions can be increased to promote the proliferation of cooperative behaviour. However, further theoretical analysis for average abundance function with mutation under redistribution mechanism is still lacking. Furthermore, the theoretical basis for the corresponding numerical simulation is not sufficiently understood.
We have deduced the approximate expressions of average abundance function with mutation under redistribution mechanism on the basis of different levels of selection intensity [Formula: see text] (sufficiently small and large enough). In addition, we have analysed the influence of the size of group d, multiplication factor r, cost c, aspiration level [Formula: see text] on average abundance function from both quantitative and qualitative aspects.
(1) The approximate expression will become the linear equation related to selection intensity when [Formula: see text] is sufficiently small. (2) On one hand, approximation expression when [Formula: see text] is large enough is not available when r is small and m is large. On the other hand, this approximation expression will become more reliable when [Formula: see text] is larger. (3) On the basis of the expected payoff function [Formula: see text] and function [Formula: see text], the corresponding results for the effects of parameters (d,r,c,[Formula: see text]) on average abundance function [Formula: see text] have been explained.
近年来,平均丰度函数因其反映了种群中的合作程度而受到广泛关注。因此,分析如何增加平均丰度函数以促进合作行为的扩散具有重要意义。然而,对于具有重分配机制的突变下的平均丰度函数的进一步理论分析仍然缺乏。此外,对相应数值模拟的理论基础理解还不够充分。
我们在不同的选择强度水平 [Formula: see text] (足够小和足够大)的基础上,推导出了具有重分配机制的突变下平均丰度函数的近似表达式。此外,我们从定量和定性两个方面分析了群体大小 d、倍增因子 r、成本 c、期望水平 [Formula: see text] 对平均丰度函数的影响。
(1)当 [Formula: see text] 足够小时,近似表达式将成为与选择强度相关的线性方程。(2)一方面,当 r 较小时,m 较大时,近似表达式在 [Formula: see text] 足够大时不可用。另一方面,当 [Formula: see text] 较大时,该近似表达式将变得更加可靠。(3)基于期望收益函数 [Formula: see text] 和函数 [Formula: see text],解释了参数(d、r、c、[Formula: see text])对平均丰度函数 [Formula: see text] 的影响的相应结果。