Graham B A, Brichta A M, Callister R J
School of Biomedical Sciences, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia.
J Physiol. 2004 Dec 15;561(Pt 3):749-63. doi: 10.1113/jphysiol.2004.072645. Epub 2004 Oct 7.
In the superficial dorsal horn (SDH) processing of noxious and innocuous stimuli is critically dependent on the input-output relationship of its component neurones. Such relationships are routinely examined by assessing neuronal responses to somatic current injection or activation of synaptic inputs. A more complete understanding of input-output relationships would be achieved by comparing, in the same neurone, how the two forms of activation contribute to neuronal output. Therefore, we examined how SDH neurones transform depolarizing current injections and synaptic excitation via peripheral cutaneous stimuli (brush and pinch of the hindpaw) into trains of action potentials, in an in vivo preparation of the adult mouse spinal cord. Under whole-cell current clamp recording conditions four action potential discharge patterns were observed during depolarizing current injection: tonic firing neurones (21/93) discharged spikes throughout the step; initial bursting neurones (35/93) discharged several spikes at step onset; single spiking neurones (16/93) discharged one or two spikes at step onset; and delayed firing neurones (21/93) discharged spikes delayed from the step onset. Four characteristic profiles were observed in response to application of noxious (pinch) and innocuous (brush) cutaneous stimuli: nociceptive neurones (20/37) responded maximally to pinch stimulation; light touch neurones (9/37) responded maximally to brush stimulation; subthreshold neurones (4/37) exhibited depolarizing responses without firing action potentials; and hyperpolarizing neurones (4/37) exhibited a sustained pinch-induced hyperpolarization. Comparisons of current-evoked discharge patterns with peripherally evoked responses indicate SDH neurones expressing each of the four discharge patterns could receive, and therefore participate in the processing of information concerning, either noxious or innocuous stimuli. These data suggest that a neurone's response to current injection does not necessarily help identify or predict how the same neurone will respond to physiologically or functionally relevant stimuli.
在浅表背角(SDH)中,伤害性和无害性刺激的处理严重依赖于其组成神经元的输入-输出关系。此类关系通常通过评估神经元对体细胞电流注入或突触输入激活的反应来进行研究。若在同一神经元中比较这两种激活形式对神经元输出的贡献,将能更全面地理解输入-输出关系。因此,我们在成年小鼠脊髓的体内制备中,研究了SDH神经元如何将去极化电流注入以及通过外周皮肤刺激(后爪刷擦和捏压)产生的突触兴奋转化为动作电位序列。在全细胞电流钳记录条件下,去极化电流注入期间观察到四种动作电位发放模式:持续放电神经元(21/93)在整个电流阶跃期间持续发放动作电位;初始爆发性神经元(35/93)在电流阶跃开始时发放几个动作电位;单次发放神经元(16/93)在电流阶跃开始时发放一到两个动作电位;延迟发放神经元(21/93)在电流阶跃开始后延迟发放动作电位。在施加伤害性(捏压)和无害性(刷擦)皮肤刺激时观察到四种特征性反应模式:伤害性感受神经元(20/37)对捏压刺激反应最大;轻触感受神经元(9/37)对刷擦刺激反应最大;阈下神经元(4/37)表现出去极化反应但不发放动作电位;超极化神经元(4/37)表现出持续的捏压诱导超极化。电流诱发发放模式与外周诱发反应的比较表明,表现出四种发放模式中每一种的SDH神经元都可以接收并因此参与有关伤害性或无害性刺激的信息处理。这些数据表明,神经元对电流注入的反应不一定有助于识别或预测同一神经元对生理或功能相关刺激的反应。