Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 1Y6, Canada.
Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec H3G 1Y6, Canada.
J Neurosci. 2023 Aug 2;43(31):5608-5622. doi: 10.1523/JNEUROSCI.0426-23.2023. Epub 2023 Jul 14.
Parvalbumin-expressing interneurons (PVINs) play a crucial role within the dorsal horn of the spinal cord by preventing touch inputs from activating pain circuits. In both male and female mice, nerve injury decreases PVINs' output via mechanisms that are not fully understood. In this study, we show that PVINs from nerve-injured male mice change their firing pattern from tonic to adaptive. To examine the ionic mechanisms responsible for this decreased output, we used a reparametrized Hodgkin-Huxley type model of PVINs, which predicted (1) the firing pattern transition is because of an increased contribution of small conductance calcium-activated potassium (SK) channels, enabled by (2) impairment in intracellular calcium buffering systems. Analyzing the dynamics of the Hodgkin-Huxley type model further demonstrated that a generalized Hopf bifurcation differentiates the two types of state transitions observed in the transient firing of PVINs. Importantly, this predicted mechanism holds true when we embed the PVIN model within the neuronal circuit model of the spinal dorsal horn. To experimentally validate this hypothesized mechanism, we used pharmacological modulators of SK channels and demonstrated that (1) tonic firing PVINs from naive male mice become adaptive when exposed to an SK channel activator, and (2) adapting PVINs from nerve-injured male mice return to tonic firing on SK channel blockade. Our work provides important insights into the cellular mechanism underlying the decreased output of PVINs in the spinal dorsal horn after nerve injury and highlights potential pharmacological targets for new and effective treatment approaches to neuropathic pain. Parvalbumin-expressing interneurons (PVINs) exert crucial inhibitory control over Aβ fiber-mediated nociceptive pathways at the spinal dorsal horn. The loss of their inhibitory tone leads to neuropathic symptoms, such as mechanical allodynia, via mechanisms that are not fully understood. This study identifies the reduced intrinsic excitability of PVINs as a potential cause for their decreased inhibitory output in nerve-injured condition. Combining computational and experimental approaches, we predict a calcium-dependent mechanism that modulates PVINs' electrical activity following nerve injury: a depletion of cytosolic calcium buffer allows for the rapid accumulation of intracellular calcium through the active membranes, which in turn potentiates SK channels and impedes spike generation. Our results therefore pinpoint SK channels as potential therapeutic targets for treating neuropathic symptoms.
在脊髓背角中,表达钙结合蛋白的中间神经元(PVINs)通过防止触觉输入激活疼痛回路而发挥关键作用。在雄性和雌性小鼠中,神经损伤通过尚未完全了解的机制降低 PVINs 的输出。在这项研究中,我们表明,来自神经损伤雄性小鼠的 PVINs 从持续放电模式转变为适应性放电模式。为了研究导致这种输出减少的离子机制,我们使用了重新参数化的 PVINs 型 Hodgkin-Huxley 模型,该模型预测(1)由于小电导钙激活钾 (SK) 通道的贡献增加,导致放电模式转变,这种贡献增加是由于(2)细胞内钙缓冲系统受损所致。对 Hodgkin-Huxley 型模型的动力学进行分析进一步表明,广义 Hopf 分岔区分了观察到的 PVIN 瞬时放电中的两种状态转变。重要的是,当我们将 PVIN 模型嵌入脊髓背角的神经元回路模型中时,该预测机制仍然成立。为了实验验证该假设机制,我们使用了 SK 通道的药理学调节剂,并证明(1)来自雄性小鼠的持续放电 PVINs 在暴露于 SK 通道激活剂时变为适应性放电,以及(2)来自雄性小鼠的适应放电 PVINs 在 SK 通道阻断后恢复为持续放电。我们的工作为神经损伤后脊髓背角中 PVIN 输出减少的细胞机制提供了重要的见解,并强调了针对神经性疼痛的新的有效治疗方法的潜在药理学靶点。表达钙结合蛋白的中间神经元(PVINs)在脊髓背角中对 Aβ 纤维介导的伤害性途径施加关键的抑制控制。其抑制性张力的丧失导致神经性症状,如机械性痛觉过敏,其机制尚不完全清楚。这项研究确定了 PVINs 的内在兴奋性降低是其在神经损伤条件下抑制性输出减少的潜在原因。通过结合计算和实验方法,我们预测了一种钙依赖性机制,该机制调节神经损伤后 PVINs 的电活动:细胞质钙缓冲液的耗竭允许通过主动膜快速积累细胞内钙,进而增强 SK 通道并阻碍尖峰生成。因此,我们的研究结果将 SK 通道确定为治疗神经性症状的潜在治疗靶点。