Suppr超能文献

分组整群设计中二元数据的统计分析方法。

Methods for the statistical analysis of binary data in split-cluster designs.

作者信息

Donner Allan, Klar Neil, Zou Guangyong

机构信息

Department of Epidemiology and Biostatistics, University of Western Ontario, London, Ontario N6A 5C1, Canada.

出版信息

Biometrics. 2004 Dec;60(4):919-25. doi: 10.1111/j.0006-341X.2004.00247.x.

Abstract

Split-cluster designs are frequently used in the health sciences when naturally occurring clusters such as multiple sites or organs in the same subject are assigned to different treatments. However, statistical methods for the analysis of binary data arising from such designs are not well developed. The purpose of this article is to propose and evaluate a new procedure for testing the equality of event rates in a design dividing each of k clusters into two segments having multiple sites (e.g., teeth, lesions). The test statistic proposed is a generalization of a previously published procedure based on adjusting the standard Pearson chi-square statistic, but can also be derived as a score test using the approach of generalized estimating equations.

摘要

当将自然形成的聚类(例如同一受试者的多个部位或器官)分配到不同治疗组时,裂区聚类设计在健康科学中经常被使用。然而,针对由此类设计产生的二元数据的统计分析方法尚未得到充分发展。本文的目的是提出并评估一种新程序,用于检验在将k个聚类中的每一个都划分为具有多个部位(例如牙齿、病变)的两个部分的设计中事件发生率的相等性。所提出的检验统计量是基于调整标准皮尔逊卡方统计量的先前发表程序的推广,但也可以使用广义估计方程的方法作为得分检验来推导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验