Suppr超能文献

具有二元结局的群组随机试验的多水平分析。

Multilevel analysis of group-randomized trials with binary outcomes.

作者信息

Kim Hae-Young, Preisser John S, Rozier R Gary, Valiyaparambil Jayasanker V

机构信息

Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea.

出版信息

Community Dent Oral Epidemiol. 2006 Aug;34(4):241-51. doi: 10.1111/j.1600-0528.2006.00307.x.

Abstract

OBJECTIVES

Many dental studies have assessed the effectiveness of community- or group-based interventions such as community water fluoridation. These cluster trials, of which group-randomized trials (GRTs) are one type, have design and analysis considerations not found in studies with randomization of treatments to individuals (randomized controlled trials, RCTs). The purpose of this paper is to review analytic methods used for the analysis of binary outcomes from cluster trials and to illustrate these concepts and analytical methods using a school-based GRT.

METHODS

We examine characteristics of GRTs including intra-class correlation (ICC), their most distinctive feature, and review analytical methods for GRTs including group-level analysis, adjusted chi-square test and multivariable analysis (mixed effect models and generalized estimating equations) for correlated binary data. We consider two- and three-level modeling of data from a cross-sectional cluster design. We apply the concepts reviewed using a GRT designed to determine the effect of incentives on response rates in a school-based dental study. We compare the results of analyses using methods for correlated binary data with those from traditional methods that do not account for ICC.

RESULTS

Application of traditional analytic methods to the dental GRT used as an example for this paper led to a substantial overstatement of the effectiveness of the intervention.

CONCLUSIONS

Ignoring the ICC among members of the same group in the analysis of public health intervention studies can lead to erroneous conclusions where groups are the unit of assignment. Special consideration is needed in the analysis of data from these cluster trials. Randomization of treatments to groups also should receive more consideration in the design of cluster trials in dental public health.

摘要

目的

许多牙科研究评估了社区或群体干预措施的效果,如社区水氟化。这些整群试验(其中群组随机试验是一种类型)具有在个体治疗随机化研究(随机对照试验,RCT)中未发现的设计和分析考量。本文的目的是回顾用于分析整群试验二元结局的分析方法,并使用基于学校的群组随机试验来说明这些概念和分析方法。

方法

我们研究群组随机试验的特征,包括其最显著的特征——组内相关系数(ICC),并回顾群组随机试验的分析方法,包括组水平分析、校正卡方检验以及针对相关二元数据的多变量分析(混合效应模型和广义估计方程)。我们考虑横断面整群设计数据的二级和三级建模。我们将使用一个旨在确定激励措施对一项基于学校的牙科研究中应答率影响的群组随机试验来应用所回顾的概念。我们将使用相关二元数据的分析方法的结果与未考虑ICC的传统方法的结果进行比较。

结果

将传统分析方法应用于本文用作示例的牙科群组随机试验,导致对干预效果的大幅高估。

结论

在公共卫生干预研究分析中忽略同一组内成员间的ICC,在以组为分配单位时可能导致错误结论。对这些整群试验的数据进行分析时需要特别考虑。在牙科公共卫生的整群试验设计中,治疗对组的随机化也应得到更多考虑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验