Ghidey Wendimagegn, Lesaffre Emmanuel, Eilers Paul
Biostatistical Centre, Catholic University of Leuven, Kapucynenvoer 35, B-3000 Leuven, Belgium.
Biometrics. 2004 Dec;60(4):945-53. doi: 10.1111/j.0006-341X.2004.00250.x.
A linear mixed model with a smooth random effects density is proposed. A similar approach to P-spline smoothing of Eilers and Marx (1996, Statistical Science 11, 89-121) is applied to yield a more flexible estimate of the random effects density. Our approach differs from theirs in that the B-spline basis functions are replaced by approximating Gaussian densities. Fitting the model involves maximizing a penalized marginal likelihood. The best penalty parameters minimize Akaike's Information Criterion employing Gray's (1992, Journal of the American Statistical Association 87, 942-951) results. Although our method is applicable to any dimensions of the random effects structure, in this article the two-dimensional case is explored. Our methodology is conceptually simple, and it is relatively easy to fit in practice and is applied to the cholesterol data first analyzed by Zhang and Davidian (2001, Biometrics 57, 795-802). A simulation study shows that our approach yields almost unbiased estimates of the regression and the smoothing parameters in small sample settings. Consistency of the estimates is shown in a particular case.
提出了一种具有平滑随机效应密度的线性混合模型。采用了与艾勒斯和马克思(1996年,《统计科学》11卷,89 - 121页)的P样条平滑法类似的方法,以得到对随机效应密度更灵活的估计。我们的方法与他们的不同之处在于,用近似高斯密度替换了B样条基函数。拟合该模型需要最大化惩罚边际似然。最佳惩罚参数利用格雷(1992年,《美国统计协会杂志》87卷,942 - 951页)的结果使赤池信息准则最小化。虽然我们的方法适用于随机效应结构的任何维度,但本文探讨二维情况。我们的方法在概念上很简单,在实际应用中相对容易拟合,并应用于张和戴维迪安(2001年,《生物统计学》57卷,795 - 802页)首次分析的胆固醇数据。一项模拟研究表明,在小样本情况下,我们的方法对回归和平滑参数产生几乎无偏的估计。在一个特定案例中展示了估计的一致性。