Suppr超能文献

具有灵活随机效应的生存时间和纵向结局的联合建模

Joint modeling of survival time and longitudinal outcomes with flexible random effects.

作者信息

Choi Jaeun, Zeng Donglin, Olshan Andrew F, Cai Jianwen

机构信息

Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY, 10461, USA.

Department of Biostatistics, University of North Carolina at Chapel Hill, McGavran-Greenberg Hl, 135 Dauer Drive, CB 7420, Chapel Hill, NC, 27599, USA.

出版信息

Lifetime Data Anal. 2018 Jan;24(1):126-152. doi: 10.1007/s10985-017-9405-4. Epub 2017 Aug 30.

Abstract

Joint models with shared Gaussian random effects have been conventionally used in analysis of longitudinal outcome and survival endpoint in biomedical or public health research. However, misspecifying the normality assumption of random effects can lead to serious bias in parameter estimation and future prediction. In this paper, we study joint models of general longitudinal outcomes and survival endpoint but allow the underlying distribution of shared random effect to be completely unknown. For inference, we propose to use a mixture of Gaussian distributions as an approximation to this unknown distribution and adopt an Expectation-Maximization (EM) algorithm for computation. Either AIC and BIC criteria are adopted for selecting the number of mixtures. We demonstrate the proposed method via a number of simulation studies. We illustrate our approach with the data from the Carolina Head and Neck Cancer Study (CHANCE).

摘要

具有共享高斯随机效应的联合模型传统上用于生物医学或公共卫生研究中的纵向结果和生存终点分析。然而,错误指定随机效应的正态性假设可能会导致参数估计和未来预测出现严重偏差。在本文中,我们研究了一般纵向结果和生存终点的联合模型,但允许共享随机效应的潜在分布完全未知。为了进行推断,我们建议使用高斯分布的混合来近似这个未知分布,并采用期望最大化(EM)算法进行计算。采用AIC和BIC准则来选择混合的数量。我们通过大量模拟研究证明了所提出的方法。我们用卡罗来纳头颈癌研究(CHANCE)的数据说明了我们的方法。

相似文献

1
Joint modeling of survival time and longitudinal outcomes with flexible random effects.
Lifetime Data Anal. 2018 Jan;24(1):126-152. doi: 10.1007/s10985-017-9405-4. Epub 2017 Aug 30.
2
A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data.
Biometrics. 2002 Dec;58(4):742-53. doi: 10.1111/j.0006-341x.2002.00742.x.
3
Joint Analysis of Survival Time and Longitudinal Categorical Outcomes.
Stat Biosci. 2015 May;7(1):19-47. doi: 10.1007/s12561-013-9091-z.
4
A joint model for longitudinal measurements and survival data in the presence of multiple failure types.
Biometrics. 2008 Sep;64(3):762-771. doi: 10.1111/j.1541-0420.2007.00952.x. Epub 2007 Dec 20.
6
Joint partially linear model for longitudinal data with informative drop-outs.
Biometrics. 2017 Mar;73(1):72-82. doi: 10.1111/biom.12566. Epub 2016 Aug 1.
7
Estimating heterogeneity in random effects models for longitudinal data.
Biom J. 2005 Jun;47(3):329-45. doi: 10.1002/bimj.200410111.
8
Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data.
Biometrics. 2008 Jun;64(2):546-56. doi: 10.1111/j.1541-0420.2007.00896.x. Epub 2007 Sep 20.
9
Joint variable selection for fixed and random effects in linear mixed-effects models.
Biometrics. 2010 Dec;66(4):1069-77. doi: 10.1111/j.1541-0420.2010.01391.x.
10
Joint modeling of recurrent events and a terminal event adjusted for zero inflation and a matched design.
Stat Med. 2018 Aug 15;37(18):2771-2786. doi: 10.1002/sim.7682. Epub 2018 Apr 22.

引用本文的文献

1
Joint modelling of longitudinal data: a scoping review of methodology and applications for non-time to event data.
BMC Med Res Methodol. 2025 Feb 17;25(1):40. doi: 10.1186/s12874-025-02485-6.
2
joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes.
BMC Med Res Methodol. 2018 Jun 7;18(1):50. doi: 10.1186/s12874-018-0502-1.
3
Special issue dedicated to Jack Kalbfleisch.
Lifetime Data Anal. 2018 Jan;24(1):1-2. doi: 10.1007/s10985-017-9416-1.

本文引用的文献

1
Joint Analysis of Survival Time and Longitudinal Categorical Outcomes.
Stat Biosci. 2015 May;7(1):19-47. doi: 10.1007/s12561-013-9091-z.
2
The gradient function as an exploratory goodness-of-fit assessment of the random-effects distribution in mixed models.
Biostatistics. 2013 Jul;14(3):477-90. doi: 10.1093/biostatistics/kxs059. Epub 2013 Jan 31.
3
The impact of random-effect misspecification on percentile estimation for longitudinal growth data.
Stat Med. 2012 Dec 10;31(28):3708-18. doi: 10.1002/sim.5437. Epub 2012 Jul 11.
4
Joint latent class models for longitudinal and time-to-event data: a review.
Stat Methods Med Res. 2014 Feb;23(1):74-90. doi: 10.1177/0962280212445839. Epub 2012 Apr 19.
6
Joint modeling of longitudinal data and informative dropout time in the presence of multiple changepoints.
Stat Med. 2011 Mar 15;30(6):611-26. doi: 10.1002/sim.4119. Epub 2010 Nov 30.
7
Inferences for joint modelling of repeated ordinal scores and time to event data.
Comput Math Methods Med. 2010 Sep;11(3):281-95. doi: 10.1080/17486701003789096.
8
A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects.
Lifetime Data Anal. 2011 Jan;17(1):80-100. doi: 10.1007/s10985-010-9169-6. Epub 2010 Jun 12.
10
Oral health and risk for head and neck squamous cell carcinoma: the Carolina Head and Neck Cancer Study.
Cancer Causes Control. 2010 Apr;21(4):567-75. doi: 10.1007/s10552-009-9486-9. Epub 2010 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验