Suppr超能文献

线性混合模型用于具有偏态正态/独立双变量响应的情况,并应用于牙周病。

Linear mixed models for skew-normal/independent bivariate responses with an application to periodontal disease.

机构信息

Division of Biostatistics and Epidemiology, Medical University of South Carolina, 135 Cannon Street, Charleston, SC 29425, USA.

出版信息

Stat Med. 2010 Nov 10;29(25):2643-55. doi: 10.1002/sim.4031.

Abstract

Bivariate clustered (correlated) data often encountered in epidemiological and clinical research are routinely analyzed under a linear mixed model (LMM) framework with underlying normality assumptions of the random effects and within-subject errors. However, such normality assumptions might be questionable if the data set particularly exhibits skewness and heavy tails. Using a Bayesian paradigm, we use the skew-normal/independent (SNI) distribution as a tool for modeling clustered data with bivariate non-normal responses in an LMM framework. The SNI distribution is an attractive class of asymmetric thick-tailed parametric structure which includes the skew-normal distribution as a special case. We assume that the random effects follow multivariate SNI distributions and the random errors follow SNI distributions which provides substantial robustness over the symmetric normal process in an LMM framework. Specific distributions obtained as special cases, viz. the skew-t, the skew-slash and the skew-contaminated normal distributions are compared, along with the default skew-normal density. The methodology is illustrated through an application to a real data which records the periodontal health status of an interesting population using periodontal pocket depth (PPD) and clinical attachment level (CAL).

摘要

在流行病学和临床研究中经常会遇到双变量聚类(相关)数据,通常在具有随机效应和个体内误差正态性假设的线性混合模型 (LMM) 框架下进行分析。然而,如果数据集特别表现出偏态和重尾,那么这种正态性假设可能是值得怀疑的。我们使用贝叶斯范式,将偏态独立(SNI)分布用作在 LMM 框架下对具有双变量非正态响应的聚类数据进行建模的工具。SNI 分布是一类具有吸引力的不对称厚尾参数结构,包括偏态正态分布作为特例。我们假设随机效应遵循多元 SNI 分布,随机误差遵循 SNI 分布,这在 LMM 框架中提供了比对称正态过程更强的稳健性。作为特例获得的特定分布,即斜 t 分布、斜斜杠分布和斜污染正态分布,与默认的偏态正态密度进行了比较。该方法通过应用于记录有趣人群牙周健康状况的真实数据进行了说明,该数据使用牙周袋深度 (PPD) 和临床附着水平 (CAL)。

相似文献

引用本文的文献

1
Single-Index Mixed-Effects Model for Asymmetric Bivariate Clustered Data.非对称双变量聚类数据的单指标混合效应模型
J Indian Soc Probab Stat. 2024 Jun;25:17-45. doi: 10.1007/s41096-024-00181-0. Epub 2024 Mar 16.
4
Robust inference for skewed data in health sciences.健康科学中偏态数据的稳健推断。
J Appl Stat. 2021 Feb 25;49(8):2093-2123. doi: 10.1080/02664763.2021.1891527. eCollection 2022.
8
Bayesian Hierarchical Joint Modeling Using Skew-Normal/Independent Distributions.使用偏态正态/独立分布的贝叶斯分层联合建模
Commun Stat Simul Comput. 2018;47(5):1420-1438. doi: 10.1080/03610918.2017.1315730. Epub 2017 Jun 28.
10
Nonparametric spatial models for clustered ordered periodontal data.用于聚类有序牙周数据的非参数空间模型。
J R Stat Soc Ser C Appl Stat. 2016 Aug;65(4):619-640. doi: 10.1111/rssc.12150. Epub 2016 Apr 14.

本文引用的文献

4
Position paper: epidemiology of periodontal diseases.立场文件:牙周疾病流行病学
J Periodontol. 2005 Aug;76(8):1406-19. doi: 10.1902/jop.2005.76.8.1406.
5
7
Periodontal diseases in the United States population.美国人群中的牙周疾病
J Periodontol. 1998 Feb;69(2):269-78. doi: 10.1902/jop.1998.69.2.269.
8
Mixed models for bivariate response repeated measures data using Gibbs sampling.使用吉布斯抽样的双变量响应重复测量数据的混合模型。
Stat Med. 1997 Jul 30;16(14):1587-601. doi: 10.1002/(sici)1097-0258(19970730)16:14<1587::aid-sim592>3.0.co;2-l.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验