Division of Biostatistics and Epidemiology, Medical University of South Carolina, 135 Cannon Street, Charleston, SC 29425, USA.
Stat Med. 2010 Nov 10;29(25):2643-55. doi: 10.1002/sim.4031.
Bivariate clustered (correlated) data often encountered in epidemiological and clinical research are routinely analyzed under a linear mixed model (LMM) framework with underlying normality assumptions of the random effects and within-subject errors. However, such normality assumptions might be questionable if the data set particularly exhibits skewness and heavy tails. Using a Bayesian paradigm, we use the skew-normal/independent (SNI) distribution as a tool for modeling clustered data with bivariate non-normal responses in an LMM framework. The SNI distribution is an attractive class of asymmetric thick-tailed parametric structure which includes the skew-normal distribution as a special case. We assume that the random effects follow multivariate SNI distributions and the random errors follow SNI distributions which provides substantial robustness over the symmetric normal process in an LMM framework. Specific distributions obtained as special cases, viz. the skew-t, the skew-slash and the skew-contaminated normal distributions are compared, along with the default skew-normal density. The methodology is illustrated through an application to a real data which records the periodontal health status of an interesting population using periodontal pocket depth (PPD) and clinical attachment level (CAL).
在流行病学和临床研究中经常会遇到双变量聚类(相关)数据,通常在具有随机效应和个体内误差正态性假设的线性混合模型 (LMM) 框架下进行分析。然而,如果数据集特别表现出偏态和重尾,那么这种正态性假设可能是值得怀疑的。我们使用贝叶斯范式,将偏态独立(SNI)分布用作在 LMM 框架下对具有双变量非正态响应的聚类数据进行建模的工具。SNI 分布是一类具有吸引力的不对称厚尾参数结构,包括偏态正态分布作为特例。我们假设随机效应遵循多元 SNI 分布,随机误差遵循 SNI 分布,这在 LMM 框架中提供了比对称正态过程更强的稳健性。作为特例获得的特定分布,即斜 t 分布、斜斜杠分布和斜污染正态分布,与默认的偏态正态密度进行了比较。该方法通过应用于记录有趣人群牙周健康状况的真实数据进行了说明,该数据使用牙周袋深度 (PPD) 和临床附着水平 (CAL)。