Suppr超能文献

机动车碰撞事故的泊松、泊松-伽马和零膨胀回归模型:平衡统计拟合与理论

Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory.

作者信息

Lord Dominique, Washington Simon P, Ivan John N

机构信息

Center for Transportation Safety, Texas Transportation Institute, Texas A and M University System, 3135 TAMU, College Station, TX 77843-3135, USA.

出版信息

Accid Anal Prev. 2005 Jan;37(1):35-46. doi: 10.1016/j.aap.2004.02.004.

Abstract

There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states-perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of "excess" zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to "excess" zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed-and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros.

摘要

在过去20年里,人们进行了大量研究,重点是预测交通设施上的机动车碰撞事故。常用的统计模型包括二项式、泊松、泊松-伽马(或负二项式)、零膨胀泊松和负二项式模型(ZIP和ZINB)以及多项概率模型。鉴于可能的建模方法众多,且每种建模方法都有大量假设,因此很难为机动车碰撞数据建模做出明智的选择。文献中很少有关于比较不同统计建模方法、确定哪种统计模型最适合碰撞数据建模以及从基本碰撞原理提供有力理由的讨论。在最近的文献中,有人提出通过假设双状态数据生成过程可以成功地对机动车碰撞过程进行建模,这意味着实体(例如交叉路口、路段、人行横道等)存在于两种状态之一——完全安全和不安全。因此,ZIP和ZINB是两种已被应用于解释碰撞计数数据中经常观察到的大量“过多”零值的模型。本研究的目的是为如何适当地对碰撞数据进行建模提供合理的指导。我们首先使用理论原理和对碰撞过程的基本理解来研究机动车碰撞过程。结果表明,基本碰撞过程遵循独立事件概率不等的伯努利试验,也称为泊松试验。我们研究了统计模型在应用于机动车碰撞过程时的演变,并指出它们在统计上对碰撞过程的近似程度。我们还介绍了双状态过程计数模型背后的理论,并指出它们为何在碰撞数据建模中变得流行。然后进行了一个模拟实验,以展示碰撞数据如何导致碰撞数据中经常观察到的“过多”零值。结果表明,泊松和其他混合概率结构是为机动车碰撞过程建模而假设的近似值。此外,还证明了在某些(相当常见)情况下会观察到过多的零值——这些情况是由于低暴露和/或时间/空间尺度选择不当,而不是潜在的双状态过程。总之,仔细选择分析的时间/空间尺度,包括在计数回归模型中改进一组解释变量和/或未观察到的异质性效应,或应用小区域统计方法(低暴露观察值)是对大量零值数据集最合理的建模方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验