Suppr超能文献

利用宏观交通流特征预测伊朗道路交通事故的时间趋势。

Forecasting time trend of road traffic crashes in Iran using the macro-scale traffic flow characteristics.

作者信息

Nassiri Habibollah, Mohammadpour Seyed Iman, Dahaghin Mohammad

机构信息

Civil Engineering Department, Sharif University of Technology, Tehran, Iran.

出版信息

Heliyon. 2023 Mar 11;9(3):e14481. doi: 10.1016/j.heliyon.2023.e14481. eCollection 2023 Mar.

Abstract

BACKGROUND

The serial correlation in the time series datasets should be considered to prevent biased estimates for coefficients. Nonetheless, the current models almost cannot explicitly handle autocorrelation and seasonality, and they focus mainly on the discrete nature of data. Nonetheless, the crash time series follows a normal distribution at the macro-scale. Moreover, the influential exogenous variables have been overlooked in Iran, employing univariate models. There are also contradictory results in the literature regarding the effect of average speed on crash frequency.

OBJECTIVE

This study is aimed to evaluate the distinct impacts of mean speed on total and fatal accident time series at the national level. Besides, the SARIMAX modeling framework is introduced as a robust multivariate method for short-term crash frequency prediction.

METHOD

To this end, monthly total and fatal crash counts were aggregated for all rural highways in Iran. Besides, the time trends of traffic exposure, and average speed recorded by loop detectors, were aggregated at the same level as covariates. The Box-Jenkins methodology was employed for time series analysis.

RESULTS

The results illustrated that the seasonal autoregressive integrated moving average with explanatory variable (SARIMAX) model outperformed the univariate ARIMA and SARIMA models. Also, SARIMA was more appropriate than the simple ARIMA when seasonality existed in the time series. Besides, the average speed had a negative linear association with the total crashes. In contrast, it revealed an increasing effect on fatal crashes.

CONCLUSION

Average speed has a dissimilar effect on the different traffic crash severities. Besides, the seasonal nature of data and the dynamic effects of the influential underlying factors should be considered to prevent underfitting issues and to predict future time trends accurately.

APPLICATIONS

The developed instruments could be employed by policymakers to evaluate the intervention's effectiveness and to forecast the future time trends of accidents in Iran.

摘要

背景

应考虑时间序列数据集中的序列相关性,以防止系数估计出现偏差。尽管如此,当前模型几乎无法明确处理自相关和季节性,且主要关注数据的离散性质。然而,碰撞时间序列在宏观尺度上服从正态分布。此外,在伊朗采用单变量模型时,有影响的外生变量被忽视了。关于平均速度对碰撞频率的影响,文献中也存在相互矛盾的结果。

目的

本研究旨在评估平均速度对国家层面总事故和致命事故时间序列的不同影响。此外,引入SARIMAX建模框架作为一种强大的多变量方法,用于短期碰撞频率预测。

方法

为此,汇总了伊朗所有农村公路的月度总碰撞次数和致命碰撞次数。此外,交通暴露的时间趋势以及环形探测器记录的平均速度,作为协变量在同一层面上进行汇总。采用Box-Jenkins方法进行时间序列分析。

结果

结果表明,带有解释变量的季节性自回归积分移动平均(SARIMAX)模型优于单变量ARIMA和SARIMA模型。此外,当时间序列中存在季节性时,SARIMA比简单的ARIMA更合适。此外,平均速度与总碰撞次数呈负线性相关。相比之下,它对致命碰撞显示出增加的影响。

结论

平均速度对不同交通碰撞严重程度有不同影响。此外,应考虑数据的季节性性质和有影响潜在因素的动态效应,以防止欠拟合问题并准确预测未来时间趋势。

应用

政策制定者可使用所开发的工具来评估干预措施的有效性,并预测伊朗事故的未来时间趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/225e/10036660/70d996f3312c/gr6.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验