Suppr超能文献

使用COMPADRES鉴定新型RNA结构基序:一种结构发现的自动化方法。

The identification of novel RNA structural motifs using COMPADRES: an automated approach to structural discovery.

作者信息

Wadley Leven M, Pyle Anna Marie

机构信息

Department of Physics, Columbia University, New York, NY 10027, USA.

出版信息

Nucleic Acids Res. 2004 Dec 17;32(22):6650-9. doi: 10.1093/nar/gkh1002. Print 2004.

Abstract

Recurring RNA structural motifs are important sites of tertiary interaction and as such, are integral to RNA macromolecular structure. Although numerous RNA motifs have been classified and characterized, the identification of new motifs is of great interest. In this study, we discovered four new conformationally recurring motifs: the pi-turn, the Omega-turn, the alpha-loop and the C2'-endo mediated flipped adenosine motif. Not only do they have complex and interesting structures, but they participate in contacts of high biological significance. In a first for the RNA field, new motifs were discovered by a fully automated algorithm. This algorithm, COMPADRES, utilized a reduced representation of the RNA backbone and was highly successful at discerning unique structural relationships. This study also shows that recurring RNA substructures are not necessarily accompanied by consistent primary or secondary structure.

摘要

反复出现的RNA结构基序是三级相互作用的重要位点,因此,它们是RNA大分子结构不可或缺的一部分。尽管已经对众多RNA基序进行了分类和表征,但新基序的识别仍备受关注。在本研究中,我们发现了四种新的构象反复出现的基序:π转角、Ω转角、α环和C2'-内型介导的翻转腺苷基序。它们不仅具有复杂而有趣的结构,而且还参与具有高度生物学意义的相互作用。在RNA领域首次通过一种全自动算法发现了新基序。该算法COMPADRES利用了RNA主链的简化表示形式,在识别独特的结构关系方面非常成功。这项研究还表明,反复出现的RNA子结构不一定伴随着一致的一级或二级结构。

相似文献

1
The identification of novel RNA structural motifs using COMPADRES: an automated approach to structural discovery.
Nucleic Acids Res. 2004 Dec 17;32(22):6650-9. doi: 10.1093/nar/gkh1002. Print 2004.
2
IncMD: incremental trie-based structural motif discovery algorithm.
J Bioinform Comput Biol. 2014 Oct;12(5):1450027. doi: 10.1142/S0219720014500279.
3
RNAMotifScanX: a graph alignment approach for RNA structural motif identification.
RNA. 2015 Mar;21(3):333-46. doi: 10.1261/rna.044891.114. Epub 2015 Jan 16.
5
The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
Acc Chem Res. 2011 Dec 20;44(12):1302-11. doi: 10.1021/ar200098t. Epub 2011 Sep 7.
6
RNAMotifScan: automatic identification of RNA structural motifs using secondary structural alignment.
Nucleic Acids Res. 2010 Oct;38(18):e176. doi: 10.1093/nar/gkq672. Epub 2010 Aug 8.
8
A Novel Algorithm for Enhanced Structural Motif Matching in Proteins.
J Comput Biol. 2015 Jul;22(7):698-713. doi: 10.1089/cmb.2014.0263. Epub 2015 Feb 19.
10
HBexplore--a new tool for identifying and analysing hydrogen bonding patterns in biological macromolecules.
Comput Appl Biosci. 1996 Aug;12(4):281-9. doi: 10.1093/bioinformatics/12.4.281.

引用本文的文献

1
GINClus: RNA structural motif clustering using graph isomorphism network.
NAR Genom Bioinform. 2025 Apr 26;7(2):lqaf050. doi: 10.1093/nargab/lqaf050. eCollection 2025 Jun.
3
Finding recurrent RNA structural networks with fast maximal common subgraphs of edge-colored graphs.
PLoS Comput Biol. 2021 May 28;17(5):e1008990. doi: 10.1371/journal.pcbi.1008990. eCollection 2021 May.
4
Identification and Characterization of New RNA Tetraloop Sequence Families.
Biochemistry. 2019 Dec 3;58(48):4809-4820. doi: 10.1021/acs.biochem.9b00535. Epub 2019 Nov 12.
6
De novo discovery of structural motifs in RNA 3D structures through clustering.
Nucleic Acids Res. 2018 May 18;46(9):4783-4793. doi: 10.1093/nar/gky139.
7
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Chem Rev. 2018 Apr 25;118(8):4177-4338. doi: 10.1021/acs.chemrev.7b00427. Epub 2018 Jan 3.
8
Mapping the Universe of RNA Tetraloop Folds.
Biophys J. 2017 Jul 25;113(2):257-267. doi: 10.1016/j.bpj.2017.06.011. Epub 2017 Jun 30.
9
Structural Basis for Substrate Helix Remodeling and Cleavage Loop Activation in the Varkud Satellite Ribozyme.
J Am Chem Soc. 2017 Jul 19;139(28):9591-9597. doi: 10.1021/jacs.7b03655. Epub 2017 Jul 3.
10
Crystal structure of the Varkud satellite ribozyme.
Nat Chem Biol. 2015 Nov;11(11):840-6. doi: 10.1038/nchembio.1929. Epub 2015 Sep 28.

本文引用的文献

1
Basis for structural diversity in homologous RNAs.
Science. 2004 Oct 1;306(5693):104-7. doi: 10.1126/science.1101489.
3
RNA conformational classes.
Nucleic Acids Res. 2004 Mar 11;32(5):1666-77. doi: 10.1093/nar/gkh333. Print 2004.
4
The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure.
Nucleic Acids Res. 2003 Dec 1;31(23):6806-18. doi: 10.1093/nar/gkg908.
5
RNA backbone is rotameric.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13904-9. doi: 10.1073/pnas.1835769100. Epub 2003 Nov 11.
6
Automated identification of RNA conformational motifs: theory and application to the HM LSU 23S rRNA.
Nucleic Acids Res. 2003 Nov 1;31(21):6249-57. doi: 10.1093/nar/gkg835.
7
Biochemical characterization of the kink-turn RNA motif.
Nucleic Acids Res. 2003 Oct 1;31(19):5544-51. doi: 10.1093/nar/gkg760.
9
Analysis of RNA motifs.
Curr Opin Struct Biol. 2003 Jun;13(3):300-8. doi: 10.1016/s0959-440x(03)00076-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验