Suppr超能文献

绘制RNA四环折叠的全貌

Mapping the Universe of RNA Tetraloop Folds.

作者信息

Bottaro Sandro, Lindorff-Larsen Kresten

机构信息

Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.

Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.

出版信息

Biophys J. 2017 Jul 25;113(2):257-267. doi: 10.1016/j.bpj.2017.06.011. Epub 2017 Jun 30.

Abstract

We report a map of RNA tetraloop conformations constructed by calculating pairwise distances among all experimentally determined four-nucleotide hairpin loops. Tetraloops with similar structures are clustered together and, as expected, the two largest clusters are the canonical GNRA and UNCG folds. We identify clusters corresponding to known tetraloop folds such as GGUG, RNYA, AGNN, and CUUG. These clusters are represented in a simple two-dimensional projection that recapitulates the relationship among the different folds. The cluster analysis also identifies 20 novel tetraloop folds that are peculiar to specific positions in ribosomal RNAs and that are stabilized by tertiary interactions. In our RNA tetraloop database we find a significant number of non-GNRA and non-UNCG sequences adopting the canonical GNRA and UNCG folds. Conversely, we find a significant number of GNRA and UNCG sequences adopting non-GNRA and non-UNCG folds. Our analysis demonstrates that there is not a simple one-to-one, but rather a many-to-many mapping between tetraloop sequence and tetraloop fold.

摘要

我们报道了一张RNA四环构象图谱,该图谱通过计算所有实验测定的四核苷酸发夹环之间的成对距离构建而成。结构相似的四环聚集在一起,不出所料,两个最大的簇是典型的GNRA和UNCG折叠。我们识别出了与已知四环折叠相对应的簇,如GGUG、RNYA、AGNN和CUUG。这些簇呈现在一个简单的二维投影中,概括了不同折叠之间的关系。聚类分析还识别出20种新的四环折叠,它们在核糖体RNA的特定位置具有独特性,并通过三级相互作用得以稳定。在我们的RNA四环数据库中,我们发现大量非GNRA和非UNCG序列采用典型的GNRA和UNCG折叠。相反,我们发现大量GNRA和UNCG序列采用非GNRA和非UNCG折叠。我们的分析表明,四环序列与四环折叠之间不是简单的一对一映射,而是多对多映射。

相似文献

1
Mapping the Universe of RNA Tetraloop Folds.
Biophys J. 2017 Jul 25;113(2):257-267. doi: 10.1016/j.bpj.2017.06.011. Epub 2017 Jun 30.
2
Revisiting GNRA and UNCG folds: U-turns versus Z-turns in RNA hairpin loops.
RNA. 2017 Mar;23(3):259-269. doi: 10.1261/rna.059097.116. Epub 2016 Dec 20.
4
Recognition modes of RNA tetraloops and tetraloop-like motifs by RNA-binding proteins.
Wiley Interdiscip Rev RNA. 2014 Jan-Feb;5(1):49-67. doi: 10.1002/wrna.1196. Epub 2013 Oct 3.
5
Conformational adaptation of UNCG loops upon crowding.
RNA. 2019 Nov;25(11):1522-1531. doi: 10.1261/rna.072694.119. Epub 2019 Aug 19.
8
Portability of the GN(R)A hairpin loop motif between RNA and DNA.
Biochemistry. 2009 Sep 22;48(37):8787-94. doi: 10.1021/bi901038s.
9
Identification of receptors for UNCG and GNRA Z-turns and their occurrence in rRNA.
Nucleic Acids Res. 2018 Sep 6;46(15):7989-7997. doi: 10.1093/nar/gky578.

引用本文的文献

1
RNA adapts its flexibility to efficiently fold and resist unfolding.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf681.
2
Unique conformational dynamics and protein recognition of A-to-I hyper-edited dsRNA.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf550.
3
Critical Assessment of RNA and DNA Structure Predictions via Artificial Intelligence: The Imitation Game.
J Chem Inf Model. 2025 Apr 14;65(7):3544-3554. doi: 10.1021/acs.jcim.5c00245. Epub 2025 Mar 30.
4
Enhanced hammerhead ribozyme turnover rates: Reevaluating therapeutic space for small catalytic RNAs.
Mol Ther Nucleic Acids. 2024 Dec 21;36(1):102431. doi: 10.1016/j.omtn.2024.102431. eCollection 2025 Mar 11.
5
RNA adapts its flexibility to efficiently fold and resist unfolding.
bioRxiv. 2024 Nov 5:2024.05.27.595525. doi: 10.1101/2024.05.27.595525.
7
Prediction of 3D RNA Structures from Sequence Using Energy Landscapes of RNA Dimers: Application to RNA Tetraloops.
J Chem Theory Comput. 2024 May 28;20(10):4363-4376. doi: 10.1021/acs.jctc.4c00189. Epub 2024 May 10.
8
Zika virus RNA structure controls its unique neurotropism by bipartite binding to Musashi-1.
Nat Commun. 2023 Feb 28;14(1):1134. doi: 10.1038/s41467-023-36838-w.
9
Identification and characterization of RNA pentaloop sequence families.
NAR Genom Bioinform. 2023 Jan 10;5(1):lqac102. doi: 10.1093/nargab/lqac102. eCollection 2023 Mar.

本文引用的文献

1
Improving Computational Predictions of Single-Stranded RNA Tetramers with Revised α/γ Torsional Parameters for the Amber Force Field.
J Phys Chem B. 2017 Apr 13;121(14):2989-2999. doi: 10.1021/acs.jpcb.7b00819. Epub 2017 Mar 31.
2
Noncanonical α/γ Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER Force Field.
J Phys Chem B. 2017 Mar 23;121(11):2420-2433. doi: 10.1021/acs.jpcb.7b00262. Epub 2017 Mar 14.
3
Revisiting GNRA and UNCG folds: U-turns versus Z-turns in RNA hairpin loops.
RNA. 2017 Mar;23(3):259-269. doi: 10.1261/rna.059097.116. Epub 2016 Dec 20.
4
Free Energy Landscape of GAGA and UUCG RNA Tetraloops.
J Phys Chem Lett. 2016 Oct 20;7(20):4032-4038. doi: 10.1021/acs.jpclett.6b01905. Epub 2016 Sep 28.
5
Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.
J Chem Theory Comput. 2016 Sep 13;12(9):4534-48. doi: 10.1021/acs.jctc.6b00300. Epub 2016 Aug 4.
6
Empirical Corrections to the Amber RNA Force Field with Target Metadynamics.
J Chem Theory Comput. 2016 Jun 14;12(6):2790-8. doi: 10.1021/acs.jctc.6b00299. Epub 2016 May 16.
7
RNA folding pathways in stop motion.
Nucleic Acids Res. 2016 Jul 8;44(12):5883-91. doi: 10.1093/nar/gkw239. Epub 2016 Apr 18.
8
What a Difference an OH Makes: Conformational Dynamics as the Basis for the Ligand Specificity of the Neomycin-Sensing Riboswitch.
Angew Chem Int Ed Engl. 2016 Jan 22;55(4):1527-30. doi: 10.1002/anie.201507365. Epub 2015 Dec 11.
9
MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.
Biophys J. 2015 Oct 20;109(8):1528-32. doi: 10.1016/j.bpj.2015.08.015.
10
Elastic network models for RNA: a comparative assessment with molecular dynamics and SHAPE experiments.
Nucleic Acids Res. 2015 Sep 3;43(15):7260-9. doi: 10.1093/nar/gkv708. Epub 2015 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验