Suppr超能文献

扭结型RNA基序的生化特性

Biochemical characterization of the kink-turn RNA motif.

作者信息

Matsumura Shigeyoshi, Ikawa Yoshiya, Inoue Tan

机构信息

Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.

出版信息

Nucleic Acids Res. 2003 Oct 1;31(19):5544-51. doi: 10.1093/nar/gkg760.

Abstract

RNA, which acts as a medium for transmitting genetic information, plays a variety of roles in a cell. As with proteins, elucidation of the three- dimensional (3D) structures of RNAs is important for understanding their various roles. Determination of the atomic structures of crystallized ribosome has enabled the identification of previously unknown RNA structural motifs. The kink-turn (K-turn or GA) motif, which causes a sharp bend in an RNA double helix, was identified as one of these structural motifs. To biochemically characterize the K-turn, the motif was inserted into a hinge region of P4-P6 RNA, which is the most extensively studied self-folding RNA, and its properties were investigated. The stability and metal ion requirement of the constructs containing three different K-turn motifs were analyzed using native PAGE and dimethyl sulfate (DMS) modification. The formation of the sharp bending structure depends on the presence of divalent cation like Mg2+ or Ca2+, although its required concentration is different for each motif.

摘要

RNA作为传递遗传信息的介质,在细胞中发挥着多种作用。与蛋白质一样,阐明RNA的三维(3D)结构对于理解其各种作用至关重要。核糖体晶体原子结构的确定使得人们能够识别出以前未知的RNA结构基序。扭结转角(K-turn或GA)基序可使RNA双螺旋产生急剧弯曲,它就是这些结构基序之一。为了从生物化学角度对K-turn进行表征,将该基序插入到研究最为广泛的自折叠RNA——P4-P6 RNA的铰链区,并对其性质进行了研究。使用非变性聚丙烯酰胺凝胶电泳(native PAGE)和硫酸二甲酯(DMS)修饰分析了含有三种不同K-turn基序的构建体的稳定性和金属离子需求。尽管每种基序所需的二价阳离子浓度不同,但急剧弯曲结构的形成取决于Mg2+或Ca2+等二价阳离子的存在。

相似文献

1
Biochemical characterization of the kink-turn RNA motif.
Nucleic Acids Res. 2003 Oct 1;31(19):5544-51. doi: 10.1093/nar/gkg760.
2
Hinge-like motions in RNA kink-turns: the role of the second a-minor motif and nominally unpaired bases.
Biophys J. 2005 May;88(5):3466-85. doi: 10.1529/biophysj.104.054916. Epub 2005 Feb 18.
3
In vitro selection of RNAs with increased tertiary structure stability.
RNA. 1999 Aug;5(8):1119-29. doi: 10.1017/s135583829999074x.
4
A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis.
J Phys Chem B. 2011 Dec 1;115(47):13897-910. doi: 10.1021/jp2065584. Epub 2011 Nov 7.
6
The kink-turn motif in RNA is dimorphic, and metal ion-dependent.
RNA. 2004 Feb;10(2):254-64. doi: 10.1261/rna.5176604.
7
Design, construction, and analysis of a novel class of self-folding RNA.
Structure. 2002 Apr;10(4):527-34. doi: 10.1016/s0969-2126(02)00739-6.

引用本文的文献

3
Modulating Immune Response with Nucleic Acid Nanoparticles.
Molecules. 2019 Oct 17;24(20):3740. doi: 10.3390/molecules24203740.
4
How the Conformations of an Internal Junction Contribute to Fold an RNA Domain.
J Phys Chem B. 2018 Dec 13;122(49):11363-11372. doi: 10.1021/acs.jpcb.8b07262. Epub 2018 Oct 17.
5
De novo discovery of structural motifs in RNA 3D structures through clustering.
Nucleic Acids Res. 2018 May 18;46(9):4783-4793. doi: 10.1093/nar/gky139.
6
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Chem Rev. 2018 Apr 25;118(8):4177-4338. doi: 10.1021/acs.chemrev.7b00427. Epub 2018 Jan 3.
8
Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology.
Nanomedicine. 2017 Apr;13(3):1137-1146. doi: 10.1016/j.nano.2016.12.018. Epub 2017 Jan 4.
10
The solution structural ensembles of RNA kink-turn motifs and their protein complexes.
Nat Chem Biol. 2016 Mar;12(3):146-52. doi: 10.1038/nchembio.1997. Epub 2016 Jan 4.

本文引用的文献

1
Progress toward an understanding of the structure and enzymatic mechanism of the large ribosomal subunit.
Cold Spring Harb Symp Quant Biol. 2001;66:33-42. doi: 10.1101/sqb.2001.66.33.
2
Design, construction, and analysis of a novel class of self-folding RNA.
Structure. 2002 Apr;10(4):527-34. doi: 10.1016/s0969-2126(02)00739-6.
4
The kink-turn: a new RNA secondary structure motif.
EMBO J. 2001 Aug 1;20(15):4214-21. doi: 10.1093/emboj/20.15.4214.
5
Atomic structures at last: the ribosome in 2000.
Curr Opin Struct Biol. 2001 Apr;11(2):144-54. doi: 10.1016/s0959-440x(00)00184-6.
6
RNA tertiary interactions in the large ribosomal subunit: the A-minor motif.
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4899-903. doi: 10.1073/pnas.081082398. Epub 2001 Apr 10.
7
A universal mode of helix packing in RNA.
Nat Struct Biol. 2001 Apr;8(4):339-43. doi: 10.1038/86221.
8
Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment.
Mol Cell. 2000 Dec;6(6):1331-42. doi: 10.1016/s1097-2765(00)00131-3.
9
TectoRNA: modular assembly units for the construction of RNA nano-objects.
Nucleic Acids Res. 2001 Jan 15;29(2):455-63. doi: 10.1093/nar/29.2.455.
10
Structure of the 30S ribosomal subunit.
Nature. 2000 Sep 21;407(6802):327-39. doi: 10.1038/35030006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验