Suppr超能文献

甲酰胺嘧啶-DNA糖基化酶对底物的识别:区分活性位点内的相互作用

Substrate discrimination by formamidopyrimidine-DNA glycosylase: distinguishing interactions within the active site.

作者信息

Perlow-Poehnelt Rebecca A, Zharkov Dmitry O, Grollman Arthur P, Broyde Suse

机构信息

Department of Biology, New York University, 100 Washington Square East, Room 1009M, New York, New York 10003, USA.

出版信息

Biochemistry. 2004 Dec 28;43(51):16092-105. doi: 10.1021/bi048747f.

Abstract

Reactive oxygen species are byproducts of normal aerobic respiration and ionizing radiation, and they readily react with DNA to form a number of base lesions, including the mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), 4,6-diamino-5-formamidopyrimidine (FapyA), and 8-oxo-7,8-dihydroadenine (8-oxoA). Such oxidative lesions are removed by the base excision repair pathway, which is initiated by DNA glycosylases such as the formamidopyrimidine-DNA glycosylase (Fpg) in Escherichia coli. The 8-oxoG, FapyG, and FapyA lesions are bound and excised by Fpg, while structurally similar 8-oxoA is excised by Fpg very poorly. We carried out molecular modeling and molecular dynamics simulations to interpret substrate discrimination within the active site of E. coli Fpg. Lys-217 and Met-73 were identified as residues playing important roles in the recognition of the oxidized imidazole ring in the substrate bases, and the Watson-Crick edge of the damaged base plays a role in optimally positioning the base within the active site. The recognition and excision of FapyA likely result from the opened imidazole ring, while 8-oxoA's lack of flexibility and closed imidazole ring may contribute to Fpg's inability to excise this base. Different interactions between each base and the enzyme specificity pocket account for differential treatment of the various lesions by this enzyme, and thus elucidate the structure-function relationship involved in an initial step of base excision repair.

摘要

活性氧是正常有氧呼吸和电离辐射的副产物,它们很容易与DNA反应形成多种碱基损伤,包括致突变的8-氧代-7,8-二氢鸟嘌呤(8-氧代鸟嘌呤)、2,6-二氨基-4-羟基-5-甲酰胺基嘧啶(FapyG)、4,6-二氨基-5-甲酰胺基嘧啶(FapyA)和8-氧代-7,8-二氢腺嘌呤(8-氧代腺嘌呤)。这些氧化损伤通过碱基切除修复途径被清除,该途径由DNA糖基化酶启动,如大肠杆菌中的甲酰胺基嘧啶-DNA糖基化酶(Fpg)。8-氧代鸟嘌呤、FapyG和FapyA损伤由Fpg结合并切除,而结构相似的8-氧代腺嘌呤被Fpg切除的效率很低。我们进行了分子建模和分子动力学模拟,以解释大肠杆菌Fpg活性位点内的底物识别。赖氨酸-217和甲硫氨酸-73被确定为在识别底物碱基中氧化的咪唑环时起重要作用的残基,受损碱基的沃森-克里克边缘在活性位点内将碱基最佳定位方面发挥作用。FapyA的识别和切除可能源于咪唑环的打开,而8-氧代腺嘌呤缺乏灵活性和封闭的咪唑环可能导致Fpg无法切除该碱基。每个碱基与酶特异性口袋之间的不同相互作用解释了该酶对各种损伤的不同处理方式,从而阐明了碱基切除修复初始步骤中涉及的结构-功能关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验