Suppr超能文献

DNA糖基化酶楔形结构对碱基对的主动去稳定作用启动损伤识别。

Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition.

作者信息

Kuznetsov Nikita A, Bergonzo Christina, Campbell Arthur J, Li Haoquan, Mechetin Grigory V, de los Santos Carlos, Grollman Arthur P, Fedorova Olga S, Zharkov Dmitry O, Simmerling Carlos

机构信息

SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia.

Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.

出版信息

Nucleic Acids Res. 2015 Jan;43(1):272-81. doi: 10.1093/nar/gku1300. Epub 2014 Dec 17.

Abstract

Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluorescent reporter tryptophan (F110W). Guanine was sampled by Fpg, as evident from the F110W stopped-flow traces, but less extensively than oxoG. The wedgeless F110A enzyme could bend DNA but failed to proceed further in oxoG recognition. Modeling of the base eversion with energy decomposition suggested that the wedge destabilizes the intrahelical base primarily through buckling both surrounding base pairs. Replacement of oxoG with abasic (AP) site rescued the activity, and calculations suggested that wedge insertion is not required for AP site destabilization and eversion. Our results suggest that Fpg, and possibly other DNA glycosylases, convert part of the binding energy into active destabilization of their substrates, using the energy differences between normal and damaged bases for fast substrate discrimination.

摘要

甲酰胺嘧啶-DNA糖基化酶(Fpg)可从DNA中切除8-氧代鸟嘌呤(oxoG),但忽略正常的鸟嘌呤。我们将分子动力学模拟和停流动力学与荧光检测相结合,以追踪Fpg及其突变体识别oxoG的过程,这些突变体中有一个关键的苯丙氨酸残基,它插入到受损碱基旁边,被替换为丙氨酸(F110A)或荧光报告色氨酸(F110W)。从F110W停流曲线可以明显看出,Fpg对鸟嘌呤也有采样,但程度不如oxoG。无楔形结构的F110A酶可以使DNA弯曲,但在识别oxoG时无法进一步进行。通过能量分解对碱基翻转进行建模表明,楔形结构主要通过使周围的两个碱基对都发生弯曲来破坏螺旋内碱基的稳定性。用无碱基(AP)位点取代oxoG可恢复活性,计算表明AP位点的去稳定化和翻转不需要楔形结构的插入。我们的结果表明,Fpg以及可能的其他DNA糖基化酶,利用正常碱基和受损碱基之间的能量差异进行快速的底物区分,将部分结合能转化为对其底物的主动去稳定化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验