Li Haoquan, Endutkin Anton V, Bergonzo Christina, Campbell Arthur J, de los Santos Carlos, Grollman Arthur, Zharkov Dmitry O, Simmerling Carlos
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia.
Nucleic Acids Res. 2016 Jan 29;44(2):683-94. doi: 10.1093/nar/gkv1092. Epub 2015 Nov 8.
In contrast to proteins recognizing small-molecule ligands, DNA-dependent enzymes cannot rely solely on interactions in the substrate-binding centre to achieve their exquisite specificity. It is widely believed that substrate recognition by such enzymes involves a series of conformational changes in the enzyme-DNA complex with sequential gates favoring cognate DNA and rejecting nonsubstrates. However, direct evidence for such mechanism is limited to a few systems. We report that discrimination between the oxidative DNA lesion, 8-oxoguanine (oxoG) and its normal counterpart, guanine, by the repair enzyme, formamidopyrimidine-DNA glycosylase (Fpg), likely involves multiple gates. Fpg uses an aromatic wedge to open the Watson-Crick base pair and everts the lesion into its active site. We used molecular dynamics simulations to explore the eversion free energy landscapes of oxoG and G by Fpg, focusing on structural and energetic details of oxoG recognition. The resulting energy profiles, supported by biochemical analysis of site-directed mutants disturbing the interactions along the proposed path, show that Fpg selectively facilitates eversion of oxoG by stabilizing several intermediate states, helping the rapidly sliding enzyme avoid full extrusion of every encountered base for interrogation. Lesion recognition through multiple gating intermediates may be a common theme in DNA repair enzymes.
与识别小分子配体的蛋白质不同,依赖DNA的酶不能仅依靠底物结合中心的相互作用来实现其高度特异性。人们普遍认为,这类酶的底物识别涉及酶-DNA复合物中的一系列构象变化,其中连续的关卡有利于同源DNA并排斥非底物。然而,这种机制的直接证据仅限于少数系统。我们报告称,修复酶甲酰胺嘧啶-DNA糖基化酶(Fpg)对氧化性DNA损伤8-氧代鸟嘌呤(oxoG)及其正常对应物鸟嘌呤的区分可能涉及多个关卡。Fpg使用一个芳香楔打开沃森-克里克碱基对,并将损伤碱基翻转到其活性位点。我们使用分子动力学模拟来探索Fpg对oxoG和G的翻转自由能景观,重点关注oxoG识别的结构和能量细节。通过对干扰沿提议路径相互作用的定点突变体进行生化分析得到支持的能量分布图表明,Fpg通过稳定几种中间状态选择性地促进oxoG的翻转,帮助快速滑动的酶避免对每个遇到的碱基进行完全挤出以进行检查。通过多个关卡中间体进行损伤识别可能是DNA修复酶中的一个共同主题。