Suppr超能文献

探索DNA识别:锌指结合特异性。

Looking into DNA recognition: zinc finger binding specificity.

作者信息

Paillard Guillaume, Deremble Cyril, Lavery Richard

机构信息

Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris 75005, France.

出版信息

Nucleic Acids Res. 2004 Dec 21;32(22):6673-82. doi: 10.1093/nar/gkh1003. Print 2004.

Abstract

We present a quantitative, theoretical analysis of the recognition mechanisms used by two zinc finger proteins: Zif268, which selectively binds to GC-rich sequences, and a Zif268 mutant, which binds to a TATA box site. This analysis is based on a recently developed method (ADAPT), which allows binding specificity to be analyzed via the calculation of complexation energies for all possible DNA target sequences. The results obtained with the zinc finger proteins show that, although both mainly select their targets using direct, pairwise protein-DNA interactions, they also use sequence-dependent DNA deformation to enhance their selectivity. A new extension of our methodology enables us to determine the quantitative contribution of these two components and also to measure the contributions of individual residues to overall specificity. The results show that indirect recognition is particularly important in the case of the TATA box binding mutant, accounting for 30% of the total selectivity. The residue-by-residue analysis of the protein-DNA interaction energy indicates that the existence of amino acid-base contacts does not necessarily imply sequence selectivity, and that side chains without contacts can nevertheless contribute to defining the protein's target sequence.

摘要

我们对两种锌指蛋白的识别机制进行了定量的理论分析

一种是选择性结合富含GC序列的Zif268,另一种是与TATA盒位点结合的Zif268突变体。该分析基于一种最近开发的方法(ADAPT),该方法可通过计算所有可能的DNA靶序列的络合能来分析结合特异性。锌指蛋白的研究结果表明,尽管两者主要通过直接的蛋白质-DNA成对相互作用来选择其靶标,但它们也利用序列依赖性的DNA变形来提高其选择性。我们方法的一个新扩展使我们能够确定这两个组成部分的定量贡献,并测量单个残基对整体特异性的贡献。结果表明,在TATA盒结合突变体的情况下,间接识别尤为重要,占总选择性的30%。蛋白质-DNA相互作用能的逐个残基分析表明,氨基酸-碱基接触的存在不一定意味着序列选择性,而没有接触的侧链仍可有助于确定蛋白质的靶序列。

相似文献

1
Looking into DNA recognition: zinc finger binding specificity.探索DNA识别:锌指结合特异性。
Nucleic Acids Res. 2004 Dec 21;32(22):6673-82. doi: 10.1093/nar/gkh1003. Print 2004.

引用本文的文献

2
Predicting DNA structure using a deep learning method.使用深度学习方法预测 DNA 结构。
Nat Commun. 2024 Feb 9;15(1):1243. doi: 10.1038/s41467-024-45191-5.

本文引用的文献

1
Analyzing protein-DNA recognition mechanisms.分析蛋白质 - DNA 识别机制。
Structure. 2004 Jan;12(1):113-22. doi: 10.1016/j.str.2003.11.022.
4
Hidden Markov models from molecular dynamics simulations on DNA.来自DNA分子动力学模拟的隐马尔可夫模型
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8642-7. doi: 10.1073/pnas.132148699. Epub 2002 Jun 18.
5
The Protein Data Bank.蛋白质数据库。
Acta Crystallogr D Biol Crystallogr. 2002 Jun;58(Pt 6 No 1):899-907. doi: 10.1107/s0907444902003451. Epub 2002 May 29.
7
Engineering polydactyl zinc-finger transcription factors.工程化多锌指转录因子。
Nat Biotechnol. 2002 Feb;20(2):135-41. doi: 10.1038/nbt0202-135.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验