Suppr超能文献

使用深度学习方法预测 DNA 结构。

Predicting DNA structure using a deep learning method.

机构信息

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.

Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.

出版信息

Nat Commun. 2024 Feb 9;15(1):1243. doi: 10.1038/s41467-024-45191-5.

Abstract

Understanding the mechanisms of protein-DNA binding is critical in comprehending gene regulation. Three-dimensional DNA structure, also described as DNA shape, plays a key role in these mechanisms. In this study, we present a deep learning-based method, Deep DNAshape, that fundamentally changes the current k-mer based high-throughput prediction of DNA shape features by accurately accounting for the influence of extended flanking regions, without the need for extensive molecular simulations or structural biology experiments. By using the Deep DNAshape method, DNA structural features can be predicted for any length and number of DNA sequences in a high-throughput manner, providing an understanding of the effects of flanking regions on DNA structure in a target region of a sequence. The Deep DNAshape method provides access to the influence of distant flanking regions on a region of interest. Our findings reveal that DNA shape readout mechanisms of a core target are quantitatively affected by flanking regions, including extended flanking regions, providing valuable insights into the detailed structural readout mechanisms of protein-DNA binding. Furthermore, when incorporated in machine learning models, the features generated by Deep DNAshape improve the model prediction accuracy. Collectively, Deep DNAshape can serve as versatile and powerful tool for diverse DNA structure-related studies.

摘要

理解蛋白质-DNA 结合的机制对于理解基因调控至关重要。三维 DNA 结构,也称为 DNA 形状,在这些机制中起着关键作用。在这项研究中,我们提出了一种基于深度学习的方法 Deep DNAshape,它通过准确考虑扩展侧翼区域的影响,从根本上改变了当前基于 k-mer 的高通量预测 DNA 形状特征的方法,而无需进行广泛的分子模拟或结构生物学实验。通过使用 Deep DNAshape 方法,可以高通量地预测任何长度和数量的 DNA 序列的 DNA 结构特征,从而了解侧翼区域对序列中目标区域 DNA 结构的影响。Deep DNAshape 方法提供了对远距离侧翼区域对目标区域的影响的访问。我们的研究结果表明,核心目标的 DNA 形状读取机制受到侧翼区域的定量影响,包括扩展的侧翼区域,这为蛋白质-DNA 结合的详细结构读取机制提供了有价值的见解。此外,当将其纳入机器学习模型时,Deep DNAshape 生成的特征可提高模型预测的准确性。总的来说,Deep DNAshape 可以作为一种通用且强大的工具,用于各种与 DNA 结构相关的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a7/10858265/0f29e05f64bb/41467_2024_45191_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验