Suppr超能文献

Effects of carbon dioxide inhalation on cerebral blood flow and oxygen tissue level in spontaneously hypertensive rabbits.

作者信息

Hegedüs K, Fekete I, Molnár L

机构信息

Department of Neurology and Psychiatry, University of Debrecen Medical School, Hungary.

出版信息

Stroke. 1992 Apr;23(4):569-75. doi: 10.1161/01.str.23.4.569.

Abstract

BACKGROUND AND PURPOSE

Because previous studies have yielded conflicting results, this study was designed to investigate the efficiency of cerebrovascular reactivity to carbon dioxide in hypertension associated with moderate diffuse cerebral ischemic lesions.

METHODS

The effects of carbon dioxide inhalation on mean arterial blood pressure, heart and respiration rates, cerebral cortical blood flow, polarographically detected oxygen currents (oxygen availability), and cerebral electrical activity were compared in 14 spontaneously hypertensive and 16 normotensive rabbits anesthetized with urethane and alpha-chloralose. Blood flow was measured with the hydrogen clearance and thermal clearance methods.

RESULTS

In the resting state the frequency of electrical activity shifted to slower components, the levels of oxygen availability and cerebral blood flow were lower (p less than 0.01), and the ratio of the two latter parameters was greater (p less than 0.01) in hypertensive rabbits than in normotensive animals. Carbon dioxide inhalation induced more marked increases in cerebral blood flow, respiration rate, and oxygen availability in hypertensive (p less than 0.01) than in normotensive (p less than 0.05) rabbits. The ratio of oxygen availability to cerebral blood flow decreased (p less than 0.01) in the former and did not change significantly in the latter group. The carbon dioxide-induced rise in blood flow was also slower and more protracted in hypertensive rabbits (p less than 0.01). Histological investigation revealed groups of neurons with ischemic changes in the cortex of the hypertensive rabbits.

CONCLUSIONS

We suggest that in hypertensive rabbits the mild multiple ischemic lesions are the basis of functional disturbances, including reduced resting cerebral blood flow, greater oxygen tissue level, slower response to carbon dioxide, and greater vasodilatory capacity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验