Láng András, Csizmadia Imre G, Perczel András
Department of Organic Chemistry, Eötvös Loránd University, Budapest, Hungary.
Proteins. 2005 Feb 15;58(3):571-88. doi: 10.1002/prot.20307.
The conformational space of the most biologically significant backbone folds of a suitable methionine peptide model was explored by density functional computational method. Using a medium [6-31G(d)] and a larger basis set [6-311++G(2d,2p)], the systematic exploration of low-energy backbone structures restricted for the "L-region" in the Ramachandran map of N-formyl-L-methioninamide results in conformers corresponding to the building units of an extended backbone structure (betaL), an inverse gamma-turn (gammaL), or a right-handed helical structure (alphaL). However, no poly-proline II type (epsilonL) fold was found, indicating that this conformer has no intrinsic stability, and highlighting the effect of molecular environment in stabilizing this backbone structure. This is in agreement with the abundance of the epsilonL-type backbone conformation of methionine found in proteins. Stability properties (DeltaE) and distinct backbone-side-chain interactions support the idea that specific intramolecular contacts are operative in the selection of the lowest energy conformers. Apart from the number of different folds, all stable conformers are within a 10 kcal x mol(-1) energy range, indicating the highly flexible behavior of methionine. This conformational feature can be important in supporting catalytic processes, facilitating protein folding and dimerization via metal ion binding. In both of the biological examples discussed (HIV-1 reverse transcriptase and PcoC copper-resistant protein), the conformational properties of Met residues were found to be of key importance. Spatial proximity to other types of residues or the same type of residue seems to be crucial for the structural integrity of a protein, whether Met is buried or exposed.
通过密度泛函计算方法探索了合适的甲硫氨酸肽模型中最具生物学意义的主链折叠的构象空间。使用中等基组[6 - 31G(d)]和更大的基组[6 - 311++G(2d,2p)],对N - 甲酰基 - L - 甲硫氨酰胺的拉氏图中“L区域”受限的低能主链结构进行系统探索,得到了与伸展主链结构(βL)、反向γ - 转角(γL)或右手螺旋结构(αL)的构建单元相对应的构象。然而,未发现多聚脯氨酸II型(εL)折叠,这表明该构象没有内在稳定性,并突出了分子环境在稳定这种主链结构中的作用。这与在蛋白质中发现的甲硫氨酸的εL型主链构象的丰度一致。稳定性性质(ΔE)和独特的主链 - 侧链相互作用支持了特定分子内接触在选择最低能量构象中起作用的观点。除了不同折叠的数量外,所有稳定构象都在10 kcal·mol⁻¹的能量范围内,这表明甲硫氨酸具有高度的柔性。这种构象特征对于支持催化过程、通过金属离子结合促进蛋白质折叠和二聚化可能很重要。在所讨论的两个生物学实例(HIV - 1逆转录酶和PcoC耐铜蛋白)中,发现甲硫氨酸残基的构象性质至关重要。无论甲硫氨酸是埋藏还是暴露,与其他类型残基或相同类型残基的空间接近度似乎对蛋白质的结构完整性至关重要。