Czock David, Keller Frieder, Rasche Franz Maximilian, Häussler Ulla
Division of Nephrology, University Hospital Ulm, Robert-Koch-Str. 8, Ulm 89081, Germany.
Clin Pharmacokinet. 2005;44(1):61-98. doi: 10.2165/00003088-200544010-00003.
Glucocorticoids have pleiotropic effects that are used to treat diverse diseases such as asthma, rheumatoid arthritis, systemic lupus erythematosus and acute kidney transplant rejection. The most commonly used systemic glucocorticoids are hydrocortisone, prednisolone, methylprednisolone and dexamethasone. These glucocorticoids have good oral bioavailability and are eliminated mainly by hepatic metabolism and renal excretion of the metabolites. Plasma concentrations follow a biexponential pattern. Two-compartment models are used after intravenous administration, but one-compartment models are sufficient after oral administration.The effects of glucocorticoids are mediated by genomic and possibly nongenomic mechanisms. Genomic mechanisms include activation of the cytosolic glucocorticoid receptor that leads to activation or repression of protein synthesis, including cytokines, chemokines, inflammatory enzymes and adhesion molecules. Thus, inflammation and immune response mechanisms may be modified. Nongenomic mechanisms might play an additional role in glucocorticoid pulse therapy. Clinical efficacy depends on glucocorticoid pharmacokinetics and pharmacodynamics. Pharmacokinetic parameters such as the elimination half-life, and pharmacodynamic parameters such as the concentration producing the half-maximal effect, determine the duration and intensity of glucocorticoid effects. The special contribution of either of these can be distinguished with pharmacokinetic/pharmacodynamic analysis. We performed simulations with a pharmacokinetic/pharmacodynamic model using T helper cell counts and endogenous cortisol as biomarkers for the effects of methylprednisolone. These simulations suggest that the clinical efficacy of low-dose glucocorticoid regimens might be increased with twice-daily glucocorticoid administration.
糖皮质激素具有多效性作用,可用于治疗多种疾病,如哮喘、类风湿性关节炎、系统性红斑狼疮和急性肾移植排斥反应。最常用的全身性糖皮质激素是氢化可的松、泼尼松龙、甲泼尼龙和地塞米松。这些糖皮质激素具有良好的口服生物利用度,主要通过肝脏代谢和代谢产物的肾脏排泄而消除。血浆浓度呈双指数模式。静脉给药后使用二室模型,但口服给药后一室模型就足够了。糖皮质激素的作用是通过基因组机制以及可能的非基因组机制介导的。基因组机制包括胞质糖皮质激素受体的激活,这会导致蛋白质合成的激活或抑制,包括细胞因子、趋化因子、炎症酶和黏附分子。因此,炎症和免疫反应机制可能会被改变。非基因组机制可能在糖皮质激素脉冲治疗中发挥额外作用。临床疗效取决于糖皮质激素的药代动力学和药效学。消除半衰期等药代动力学参数以及产生半数最大效应的浓度等药效学参数,决定了糖皮质激素作用的持续时间和强度。通过药代动力学/药效学分析可以区分这两者各自的特殊贡献。我们使用药代动力学/药效学模型进行模拟,将辅助性T细胞计数和内源性皮质醇作为甲泼尼龙作用的生物标志物。这些模拟表明,每日两次给予糖皮质激素可能会提高低剂量糖皮质激素方案的临床疗效。