Szeto Jason, Eng Nelson F, Acharya Sudeep, Rigden Marc D, Dillon Jo-Anne R
Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.
Res Microbiol. 2005 Jan-Feb;156(1):17-29. doi: 10.1016/j.resmic.2004.07.009.
A region in the cell division site determinant MinD required for stimulation by MinE and which determines MinD topological specificity along coil-like structures has been identified. Structural modeling of dimeric MinD and sequence alignment of 24 MinD proteins revealed a conserved polar region in Gram-negative bacterial MinD proteins, corresponding to residues 92-94 of Neisseria gonorrhoeae MinD (MinD(Ng)). Using MinD(Ng) as a paradigm for MinD functionality in Gram-negative organisms, mutation of these conserved residues did not abrogate MinD(Ng) self-association, nor its interaction with MinE(Ng) and the cell division inhibitor MinC. Although the MinD(Ng) mutant dimerized in the presence of ATP, its ATPase activity was not stimulated by MinE(Ng), unlike wild-type MinD(Ng). GFP fusions to either MinD(Ng) or to Escherichia coli MinD bearing simultaneous or individual mutations to residues 92-94 localized within coiled arrays along the E. coli inner cell periphery, similar to wild-type GFP-MinD. However, unlike wild-type GFP-fusions, the mutant proteins were distributed uniformly throughout the array, despite the presence of MinE, which normally imparts topological specificity to MinD by inducing the latter to oscillate from pole-to-pole and away from midcell. Hence, despite localizing along the inner cell periphery as a polymeric structure, the mutant MinD proteins in this study have lost the ability to be efficiently stimulated by MinE(Ng), resulting in a loss of distinct pole-to-pole oscillation.
已鉴定出细胞分裂位点决定因子MinD中的一个区域,该区域是MinE刺激所必需的,并且决定了MinD沿螺旋状结构的拓扑特异性。二聚体MinD的结构建模和24种MinD蛋白的序列比对揭示了革兰氏阴性细菌MinD蛋白中的一个保守极性区域,对应于淋病奈瑟菌MinD(MinD(Ng))的第92 - 94位残基。以MinD(Ng)作为革兰氏阴性生物中MinD功能的范例,这些保守残基的突变并未消除MinD(Ng)的自缔合,也未消除其与MinE(Ng)和细胞分裂抑制剂MinC的相互作用。尽管MinD(Ng)突变体在ATP存在下会二聚化,但其ATP酶活性不像野生型MinD(Ng)那样受到MinE(Ng)的刺激。与野生型MinD(Ng)相似,与MinD(Ng)或对第92 - 94位残基同时或单个进行突变的大肠杆菌MinD的GFP融合蛋白沿大肠杆菌细胞内膜周边定位在螺旋阵列中。然而,与野生型GFP融合蛋白不同的是,尽管存在MinE,突变蛋白仍均匀分布在整个阵列中,MinE通常通过诱导MinD从极到极并远离细胞中部振荡来赋予MinD拓扑特异性。因此,尽管本研究中的突变MinD蛋白作为聚合物结构沿细胞内膜周边定位,但它们已失去了被MinE(Ng)有效刺激的能力,导致明显的极到极振荡丧失。