Suppr超能文献

基于疾病诊断相关分组的成本最小化模型:在医院环境中的应用

DRG-based cost minimization models: applications in a hospital environment.

作者信息

Suthummanon Sakesun, Omachonu Vincent K

机构信息

Department of Industrial Engineering, University of Miami, Coral Gables, FL 33124-0623, USA.

出版信息

Health Care Manag Sci. 2004 Aug;7(3):197-205. doi: 10.1023/b:hcms.0000039382.05904.c3.

Abstract

The primary objective of this article is to investigate the feasibility of the application of cost minimization analysis in a teaching hospital environment. The investigation is concerned with the development of cost per admission and cost per patient day models. These models are further used for determining the value of the length of stay that would minimize cost per patient day (projected length of stay) and for estimating the costs. This study is based on total of 94,500 observations (1999 and 2000), obtained from a teaching hospital in South Florida. The top ten Diagnosis Related Groups (DRGs) with the highest volume are selected and classified into four insurance categories: Medicaid, Medicare, commercial, and self-pay. The cost models are fitted to the data for an average R2 value of 79%, and a MAPE value of 15%. The result demonstrates that if a hospital can control the length of stay at the projected level, on average, the cost per admission and the cost per patient day will decrease. Based on 6,367 admissions for the selected DRGs in 2000, the total cost per year and the cost per patient day decreased by approximately 11.58 and 10.35%, respectively. Overall, these results confirm that the concept of cost minimization analysis in economic theory can be applied to healthcare industries for the purpose of reducing of costs. In addition, this research offers a decision support instrument for healthcare administrators.

摘要

本文的主要目的是研究在教学医院环境中应用成本最小化分析的可行性。该研究关注每次住院成本和每日住院成本模型的开发。这些模型进一步用于确定能使每日住院成本最小化的住院时长(预计住院时长)的价值,并用于估算成本。本研究基于从南佛罗里达州一家教学医院获取的总共94500条观测数据(1999年和2000年)。选取病例数最多的十大诊断相关分组(DRG),并将其分为四类保险:医疗补助、医疗保险、商业保险和自费。成本模型与数据拟合后,平均R²值为79%,平均绝对百分比误差值为15%。结果表明,如果医院能够将住院时长控制在预计水平,平均而言,每次住院成本和每日住院成本将会降低。基于2000年所选DRG的6367例住院病例,每年的总成本和每日住院成本分别下降了约11.58%和10.35%。总体而言,这些结果证实了经济理论中的成本最小化分析概念可应用于医疗行业以降低成本。此外,本研究为医疗管理人员提供了一种决策支持工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验