Reinbolt Jeffrey A, Schutte Jaco F, Fregly Benjamin J, Koh Byung Il, Haftka Raphael T, George Alan D, Mitchell Kim H
Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
J Biomech. 2005 Mar;38(3):621-6. doi: 10.1016/j.jbiomech.2004.03.031.
Dynamic patient-specific musculoskeletal models have great potential for addressing clinical problems in orthopedics and rehabilitation. However, their predictive capability is limited by how well the underlying kinematic model matches the patient's structure. This study presents a general two-level optimization procedure for tuning any multi-joint kinematic model to a patient's experimental movement data. An outer level optimization modifies the model's parameters (joint position and orientations) while repeated inner level optimizations modify the model's degrees of freedom given the current parameters, with the goal of minimizing errors between model and experimental marker trajectories. The approach is demonstrated by fitting a 27 parameter, three-dimensional, 12 degree-of-freedom lower-extremity kinematic model to synthetic and experimental movement data for isolated joint (hip, knee, and ankle) and gait (full leg) motions. For noiseless synthetic data, the approach successfully recovered the known joint parameters to within an arbitrarily tight tolerance. When noise was added to the synthetic data, root-mean-square (RMS) errors between known and recovered joint parameters were within 10.4 degrees and 10 mm. For experimental data, RMS marker distance errors were reduced by up to 62% compared to methods that estimate joint parameters from anatomical landmarks. Optimized joint parameters found using a loaded full-leg gait motion differed significantly from those found using unloaded individual joint motions. In the future, this approach may facilitate the creation of dynamic patient-specific musculoskeletal models for predictive clinical applications.
动态的患者特异性肌肉骨骼模型在解决骨科和康复领域的临床问题方面具有巨大潜力。然而,其预测能力受到基础运动学模型与患者结构匹配程度的限制。本研究提出了一种通用的两级优化程序,用于将任何多关节运动学模型调整为与患者的实验运动数据相匹配。外层优化修改模型参数(关节位置和方向),而重复的内层优化则在给定当前参数的情况下修改模型的自由度,目标是最小化模型与实验标记轨迹之间的误差。通过将一个具有27个参数、三维、12自由度的下肢运动学模型拟合到孤立关节(髋、膝和踝)和步态(全腿)运动的合成及实验运动数据,对该方法进行了演示。对于无噪声的合成数据,该方法成功地将已知关节参数恢复到任意紧密的公差范围内。当向合成数据中添加噪声时,已知关节参数与恢复的关节参数之间的均方根(RMS)误差在10.4度和10毫米以内。对于实验数据,与从解剖标志估计关节参数的方法相比,标记距离的RMS误差降低了高达62%。使用负重全腿步态运动找到的优化关节参数与使用非负重单个关节运动找到的参数有显著差异。未来,这种方法可能有助于创建用于预测性临床应用的动态患者特异性肌肉骨骼模型。