Suppr超能文献

光系统II中的电荷复合与热释光

Charge recombination and thermoluminescence in photosystem II.

作者信息

Rappaport Fabrice, Cuni Aude, Xiong Ling, Sayre Richard, Lavergne Jérôme

机构信息

Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique UPR 1261, Paris, France.

出版信息

Biophys J. 2005 Mar;88(3):1948-58. doi: 10.1529/biophysj.104.050237. Epub 2005 Jan 14.

Abstract

In the recombination process of Photosystem II (S(2)Q(A)(-)-->S(1)Q(A)) the limiting step is the electron transfer from the reduced primary acceptor pheophytin Ph(-) to the oxidized primary donor P(+) and the rate depends on the equilibrium constant between states S(2)PPhQ(A)(-) and S(1)P(+)Ph(-)Q(A). Accordingly, mutations that affect the midpoint potential of Ph or of P result in a modified recombination rate. A strong correlation is observed between the effects on the recombination rate and on thermoluminescence (TL, the light emission from S(2)Q(A)(-) during a warming ramp): a slower recombination corresponds to a large enhancement and higher temperature of the TL peak. The current theory of TL does not account for these effects, because it is based on the assumption that the rate-limiting step coincides with the radiative process. When implementing the known fact that the radiative pathway represents a minor leak, the modified TL theory readily accounts qualitatively for the observed behavior. However, the peak temperature is still lower than predicted from the temperature-dependence of recombination. We argue that this reflects the heterogeneity of the recombination process combined with the enhanced sensitivity of TL to slower components. The recombination kinetics are accurately fitted as a sum of two exponentials and we show that this is not due to a progressive stabilization of the charge-separated state, but to a pre-existing conformational heterogeneity.

摘要

在光系统II的重组过程(S(2)Q(A)(-) --> S(1)Q(A))中,限速步骤是电子从还原的初级受体脱镁叶绿素Ph(-)转移到氧化的初级供体P(+),其速率取决于状态S(2)PPhQ(A)(-)和S(1)P(+)Ph(-)Q(A)之间的平衡常数。因此,影响Ph或P中点电位的突变会导致重组速率发生改变。在对重组速率的影响和对热释光(TL,升温过程中S(2)Q(A)(-)的发光)的影响之间观察到强烈的相关性:较慢的重组对应于TL峰的大幅增强和更高温度。当前的TL理论无法解释这些影响,因为它基于限速步骤与辐射过程一致的假设。当考虑到辐射途径是一个小泄漏这一已知事实时,改进后的TL理论很容易定性地解释观察到的行为。然而,峰值温度仍然低于根据重组的温度依赖性预测的值。我们认为这反映了重组过程的异质性以及TL对较慢组分的增强敏感性。重组动力学可以精确地拟合为两个指数之和,我们表明这不是由于电荷分离态的逐渐稳定,而是由于预先存在的构象异质性。

相似文献

1
Charge recombination and thermoluminescence in photosystem II.
Biophys J. 2005 Mar;88(3):1948-58. doi: 10.1529/biophysj.104.050237. Epub 2005 Jan 14.
3
Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition.
Biochim Biophys Acta. 2013 Oct;1827(10):1183-90. doi: 10.1016/j.bbabio.2013.06.004. Epub 2013 Jun 17.
4
Modulating the redox potential of the stable electron acceptor, Q(B), in mutagenized photosystem II reaction centers.
Biochemistry. 2011 Mar 8;50(9):1454-64. doi: 10.1021/bi1017649. Epub 2011 Feb 10.
7
8
Thermoluminescence: a technique for probing photosystem II.
Methods Mol Biol. 2004;274:229-48. doi: 10.1385/1-59259-799-8:229.
9
Modification of the pheophytin redox potential in Thermosynechococcus elongatus Photosystem II with PsbA3 as D1.
Biochim Biophys Acta. 2014 Jan;1837(1):139-48. doi: 10.1016/j.bbabio.2013.09.009. Epub 2013 Sep 20.
10
Analysis of S2QA- charge recombination with the Arrhenius, Eyring and Marcus theories.
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):292-300. doi: 10.1016/j.jphotobiol.2011.03.013. Epub 2011 Mar 29.

引用本文的文献

2
Analysis of the changes of electron transfer and heterogeneity of photosystem II in Deg1-reduced Arabidopsis plants.
Photosynth Res. 2021 Dec;150(1-3):159-177. doi: 10.1007/s11120-021-00842-2. Epub 2021 May 16.
4
A comparison between plant photosystem I and photosystem II architecture and functioning.
Curr Protein Pept Sci. 2014;15(4):296-331. doi: 10.2174/1389203715666140327102218.
5
Applications of delayed fluorescence from photosystem II.
Sensors (Basel). 2013 Dec 16;13(12):17332-45. doi: 10.3390/s131217332.
6
Pitfalls, artefacts and open questions in chlorophyll thermoluminescence of leaves or algal cells.
Photosynth Res. 2013 Jul;115(2-3):89-99. doi: 10.1007/s11120-013-9859-5. Epub 2013 May 30.
7
Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise.
Photosynth Res. 2012 Sep;113(1-3):15-61. doi: 10.1007/s11120-012-9754-5. Epub 2012 Jul 19.
8
Thermoluminescence and conformational transitions in the primary processes of photosynthesis.
Dokl Biochem Biophys. 2012 May-Jun;444:149-53. doi: 10.1134/S1607672912030076. Epub 2012 Jul 8.
10
Thermoluminescence: experimental.
Photosynth Res. 2009 Aug-Sep;101(2-3):195-204. doi: 10.1007/s11120-009-9436-0. Epub 2009 Jun 24.

本文引用的文献

1
Electron transfer in photosystem II.
Photosynth Res. 1985 Jan;6(2):97-112. doi: 10.1007/BF00032785.
2
Photosynthetic glow peaks and their relationship with the free energy changes.
Photosynth Res. 1990 May;24(2):175-81. doi: 10.1007/BF00032597.
3
Dependence of Delayed Luminescence upon Adenosine Triphosphatase Activity in Chlorella.
Plant Physiol. 1980 Apr;65(4):691-6. doi: 10.1104/pp.65.4.691.
4
Energetics of photosynthetic glow peaks.
Proc Natl Acad Sci U S A. 1983 Feb;80(4):983-7. doi: 10.1073/pnas.80.4.983.
5
The history of photosynthetic thermoluminescence.
Photosynth Res. 2003;76(1-3):303-18. doi: 10.1023/A:1024989519054.
6
Architecture of the photosynthetic oxygen-evolving center.
Science. 2004 Mar 19;303(5665):1831-8. doi: 10.1126/science.1093087. Epub 2004 Feb 5.
8
Kinetics and pathways of charge recombination in photosystem II.
Biochemistry. 2002 Jul 2;41(26):8518-27. doi: 10.1021/bi025725p.
10
Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution.
Nature. 2001 Feb 8;409(6821):739-43. doi: 10.1038/35055589.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验