Suppr超能文献

鞘磷脂的3-羟基和4,5-反式双键对于调节半乳糖神经酰胺跨膜不对称性至关重要。

The 3-hydroxy group and 4,5-trans double bond of sphingomyelin are essential for modulation of galactosylceramide transmembrane asymmetry.

作者信息

Malewicz Barbara, Valiyaveettil Jacob T, Jacob Kochurani, Byun Hoe-Sup, Mattjus Peter, Baumann Wolfgang J, Bittman Robert, Brown Rhoderick E

机构信息

University of Minnesota, Hormel Institute, Austin, Minnesota 55912, USA.

出版信息

Biophys J. 2005 Apr;88(4):2670-80. doi: 10.1529/biophysj.104.057059. Epub 2005 Jan 14.

Abstract

The structural features of SPM that control the transbilayer distribution of beta-GalCer in POPC vesicles were investigated by (13)C- and (31)P-NMR spectroscopy using lipid analogs that share physical similarities with GalCer or SPM. The SPM analogs included N-palmitoyl-4,5-dihydro-SPM, 3-deoxy-SPM, 1-alkyl-2-amidophosphatidylcholine, and dipalmitoylphosphatidylcholine, a popular model "raft lipid". The transbilayer distributions of the SPM analogs and SPM in POPC vesicles were similar by (31)P-NMR. To observe the dramatic change in GalCer transbilayer distribution that occurs when SPM is included in POPC vesicles, the 3-OH group, 4,5-trans double bond, and amide linkage all were required in SPM. However, inclusion of 2 and 10 mol % dihydroSPM in SPM/POPC (1:1) vesicles mitigated and completely abrogated the effect of SPM on the transbilayer distribution of GalCer. Despite sharing some structural features with GalCer and localizing preferentially to the inner leaflet of POPC vesicles, dimyristoylphosphatidylethanolamine did not undergo a change in transbilayer distribution when SPM was incorporated into the vesicles. The results support the hypothesis that specific interactions may be favored among select sphingolipids in curvature-stressed membranes and emphasize the potential importance of the SPM-dihydroSPM ratio in membrane fission and fusion processes associated with vesicle biogenesis and trafficking.

摘要

利用与半乳糖神经酰胺(GalCer)或鞘氨醇磷脂酰胆碱(SPM)具有物理相似性的脂质类似物,通过¹³C-和³¹P-核磁共振光谱研究了控制SPM在1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱(POPC)囊泡中跨双层分布的结构特征。SPM类似物包括N-棕榈酰-4,5-二氢-SPM、3-脱氧-SPM、1-烷基-2-酰胺基磷脂酰胆碱以及二棕榈酰磷脂酰胆碱(一种常用的模型“筏脂”)。通过³¹P-核磁共振光谱可知,SPM类似物和SPM在POPC囊泡中的跨双层分布相似。为了观察当SPM包含在POPC囊泡中时GalCer跨双层分布发生的显著变化,SPM中3-OH基团、4,5-反式双键和酰胺键都是必需的。然而,在SPM/POPC(1:1)囊泡中加入2 mol%和10 mol%的二氢SPM可减轻并完全消除SPM对GalCer跨双层分布的影响。尽管二肉豆蔻酰磷脂酰乙醇胺与GalCer具有一些结构特征且优先定位于POPC囊泡的内小叶,但当SPM掺入囊泡时,其二跨双层分布并未发生变化。这些结果支持了以下假设:在曲率应力膜中,特定的鞘脂之间可能存在有利的相互作用,并强调了SPM-二氢SPM比例在与囊泡生物发生和运输相关的膜裂变和融合过程中的潜在重要性。

相似文献

2
Sphingomyelin modulates the transbilayer distribution of galactosylceramide in phospholipid membranes.
J Biol Chem. 2002 May 31;277(22):19476-81. doi: 10.1074/jbc.M201305200. Epub 2002 Mar 21.
4
Molecular features of phospholipids that affect glycolipid transfer protein-mediated galactosylceramide transfer between vesicles.
Biochim Biophys Acta. 2006 Jun;1758(6):807-12. doi: 10.1016/j.bbamem.2006.04.023. Epub 2006 May 7.
5
Structure and lipid interaction of N-palmitoylsphingomyelin in bilayer membranes as revealed by 2H-NMR spectroscopy.
Biophys J. 2006 Feb 1;90(3):939-46. doi: 10.1529/biophysj.105.063271. Epub 2005 Nov 11.
6
Miscibility phase diagrams of giant vesicles containing sphingomyelin.
Phys Rev Lett. 2005 Apr 15;94(14):148101. doi: 10.1103/PhysRevLett.94.148101. Epub 2005 Apr 13.
7
Macro-ripple phase formation in bilayers composed of galactosylceramide and phosphatidylcholine.
Biophys J. 1995 Apr;68(4):1396-405. doi: 10.1016/S0006-3495(95)80312-7.
10
Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions.
Biophys J. 2006 Jun 15;90(12):4466-78. doi: 10.1529/biophysj.105.072744. Epub 2006 Mar 24.

引用本文的文献

1
Phosphatidylserine Stimulates Ceramide 1-Phosphate (C1P) Intermembrane Transfer by C1P Transfer Proteins.
J Biol Chem. 2017 Feb 10;292(6):2531-2541. doi: 10.1074/jbc.M116.760256. Epub 2016 Dec 23.
3
Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.
PLoS One. 2014 Jan 28;9(1):e87903. doi: 10.1371/journal.pone.0087903. eCollection 2014.
7
Biosynthesis and immunogenicity of glucosylceramide in Cryptococcus neoformans and other human pathogens.
Eukaryot Cell. 2007 Oct;6(10):1715-26. doi: 10.1128/EC.00208-07. Epub 2007 Aug 10.
8
Glycolipid transfer proteins.
Biochim Biophys Acta. 2007 Jun;1771(6):746-60. doi: 10.1016/j.bbalip.2007.01.011. Epub 2007 Jan 24.
9
Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions.
Biophys J. 2006 Jun 15;90(12):4466-78. doi: 10.1529/biophysj.105.072744. Epub 2006 Mar 24.

本文引用的文献

2
Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine.
Biophys J. 2004 Nov;87(5):2976-89. doi: 10.1529/biophysj.104.048702. Epub 2004 Aug 17.
3
The complex life of simple sphingolipids.
EMBO Rep. 2004 Aug;5(8):777-82. doi: 10.1038/sj.embor.7400208.
4
Model systems, lipid rafts, and cell membranes.
Annu Rev Biophys Biomol Struct. 2004;33:269-95. doi: 10.1146/annurev.biophys.32.110601.141803.
5
Sphingolipids in human lens membranes: an update on their composition and possible biological implications.
Chem Phys Lipids. 2004 Apr;129(1):1-20. doi: 10.1016/j.chemphyslip.2003.12.003.
6
Glycosphingolipids and cell death.
Glycoconj J. 2004;20(1):39-47. doi: 10.1023/B:GLYC.0000016741.88476.8b.
7
Structure of sphingomyelin bilayers: a simulation study.
Biophys J. 2003 Dec;85(6):3624-35. doi: 10.1016/S0006-3495(03)74780-8.
8
Protein-lipid interplay in fusion and fission of biological membranes.
Annu Rev Biochem. 2003;72:175-207. doi: 10.1146/annurev.biochem.72.121801.161504.
9
Mechanisms of membrane deformation.
Curr Opin Cell Biol. 2003 Aug;15(4):372-81. doi: 10.1016/s0955-0674(03)00073-5.
10
Hydration and lateral organization in phospholipid bilayers containing sphingomyelin: a 2H-NMR study.
Biophys J. 2003 Aug;85(2):1013-24. doi: 10.1016/S0006-3495(03)74540-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验