Suppr超能文献

细菌中转录-复制碰撞的机制。

Mechanisms of transcription-replication collisions in bacteria.

作者信息

Mirkin Ekaterina V, Mirkin Sergei M

机构信息

Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, IL 60607, USA.

出版信息

Mol Cell Biol. 2005 Feb;25(3):888-95. doi: 10.1128/MCB.25.3.888-895.2005.

Abstract

While collisions between replication and transcription in bacteria are deemed inevitable, the fine details of the interplay between the two machineries are poorly understood. In this study, we evaluate the effects of transcription on the replication fork progression in vivo, by using electrophoresis analysis of replication intermediates. Studying Escherichia coli plasmids, which carry constitutive or inducible promoters in different orientations relative to the replication origin, we show that the mutual orientation of the two processes determines their mode of interaction. Replication elongation appears not to be affected by transcription proceeding in the codirectional orientation. Head-on transcription, by contrast, leads to severe inhibition of the replication fork progression. Furthermore, we evaluate the mechanism of this inhibition by limiting the area of direct contact between the two machineries. We observe that replication pausing zones coincide exactly with transcribed DNA segments. We conclude, therefore, that the replication fork is most likely attenuated upon direct physical interaction with the head-on transcription machinery.

摘要

虽然细菌中复制和转录之间的碰撞被认为是不可避免的,但这两种机制之间相互作用的精细细节却知之甚少。在本研究中,我们通过对复制中间体进行电泳分析,评估转录对体内复制叉进展的影响。研究携带相对于复制起点处于不同方向的组成型或诱导型启动子的大肠杆菌质粒时,我们发现这两个过程的相互方向决定了它们的相互作用模式。同向转录似乎不会影响复制延伸。相比之下,迎头转录会导致复制叉进展受到严重抑制。此外,我们通过限制两种机制之间的直接接触面积来评估这种抑制的机制。我们观察到复制暂停区与转录的DNA片段完全重合。因此,我们得出结论,复制叉很可能在与迎头转录机制直接物理相互作用时受到衰减。

相似文献

1
Mechanisms of transcription-replication collisions in bacteria.
Mol Cell Biol. 2005 Feb;25(3):888-95. doi: 10.1128/MCB.25.3.888-895.2005.
4
The nature of mutations induced by replication–transcription collisions.
Nature. 2016 Jul 7;535(7610):178-81. doi: 10.1038/nature18316. Epub 2016 Jun 29.
6
Premature termination of DNA replication in plasmids carrying two inversely oriented ColE1 origins.
J Mol Biol. 2000 Jun 30;300(1):75-82. doi: 10.1006/jmbi.2000.3843.
7
End of the beginning: elongation and termination features of alternative modes of chromosomal replication initiation in bacteria.
PLoS Genet. 2015 Jan 8;11(1):e1004909. doi: 10.1371/journal.pgen.1004909. eCollection 2015 Jan.
8
SeqA, the Escherichia coli origin sequestration protein, can regulate the replication of the pBR322 plasmid.
Plasmid. 2011 Jan;65(1):15-9. doi: 10.1016/j.plasmid.2010.09.003. Epub 2010 Sep 25.
9
A set of plasmids constitutively producing different RNA levels in Escherichia coli.
J Mol Biol. 1999 Jul 9;290(2):385-9. doi: 10.1006/jmbi.1999.2885.
10
Transcription-induced deletions in Escherichia coli plasmids.
Mol Microbiol. 1995 Aug;17(3):493-504. doi: 10.1111/j.1365-2958.1995.mmi_17030493.x.

引用本文的文献

1
Transcription-Replication Conflicts: Unlocking New Frontiers in Cancer.
Bioessays. 2025 Aug;47(8):e70025. doi: 10.1002/bies.70025. Epub 2025 Jun 9.
3
Gene syntaxes modulate gene expression and circuit behavior on plasmids.
J Biol Eng. 2025 Mar 27;19(1):25. doi: 10.1186/s13036-025-00493-0.
4
Concise Overview of Methodologies Employed in the Study of Bacterial DNA Replication.
Int J Mol Sci. 2025 Jan 7;26(2):446. doi: 10.3390/ijms26020446.
5
6
RNA Polymerase II is a Polar Roadblock to a Progressing DNA Fork.
bioRxiv. 2024 Oct 13:2024.10.11.617674. doi: 10.1101/2024.10.11.617674.
7
Expanding the genetic toolbox for the obligate human pathogen .
Front Bioeng Biotechnol. 2024 Jun 7;12:1395659. doi: 10.3389/fbioe.2024.1395659. eCollection 2024.
8
Origin, evolution, and maintenance of gene-strand bias in bacteria.
Nucleic Acids Res. 2024 Apr 24;52(7):3493-3509. doi: 10.1093/nar/gkae155.
9
TOP1 and R-loops facilitate transcriptional DSBs at hypertranscribed cancer driver genes.
iScience. 2024 Feb 1;27(3):109082. doi: 10.1016/j.isci.2024.109082. eCollection 2024 Mar 15.
10
Processing of stalled replication forks in Bacillus subtilis.
FEMS Microbiol Rev. 2024 Jan 12;48(1). doi: 10.1093/femsre/fuad065.

本文引用的文献

5
Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I.
Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9727-32. doi: 10.1073/pnas.1333928100. Epub 2003 Aug 8.
6
Essentiality, not expressiveness, drives gene-strand bias in bacteria.
Nat Genet. 2003 Aug;34(4):377-8. doi: 10.1038/ng1209.
7
Transcription-dependent recombination and the role of fork collision in yeast rDNA.
Genes Dev. 2003 Jun 15;17(12):1497-506. doi: 10.1101/gad.1085403. Epub 2003 Jun 3.
8
DNA knotting caused by head-on collision of transcription and replication.
J Mol Biol. 2002 Sep 6;322(1):1-6. doi: 10.1016/s0022-2836(02)00740-4.
9
Genome stability and the processing of damaged replication forks by RecG.
Trends Genet. 2002 Aug;18(8):413-9. doi: 10.1016/s0168-9525(02)02720-8.
10
Transcription termination factor TTF-I exhibits contrahelicase activity during DNA replication.
EMBO Rep. 2002 Feb;3(2):147-52. doi: 10.1093/embo-reports/kvf027. Epub 2002 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验