Suppr超能文献

在错误方向上进行复制的后果:无活性复制起点的细菌染色体复制

The Consequences of Replicating in the Wrong Orientation: Bacterial Chromosome Duplication without an Active Replication Origin.

作者信息

Dimude Juachi U, Stockum Anna, Midgley-Smith Sarah L, Upton Amy L, Foster Helen A, Khan Arshad, Saunders Nigel J, Retkute Renata, Rudolph Christian J

机构信息

Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.

Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Center, Nottingham, United Kingdom.

出版信息

mBio. 2015 Nov 3;6(6):e01294-15. doi: 10.1128/mBio.01294-15.

Abstract

UNLABELLED

Chromosome replication is regulated in all organisms at the assembly stage of the replication machinery at specific origins. In Escherichia coli, the DnaA initiator protein regulates the assembly of replication forks at oriC. This regulation can be undermined by defects in nucleic acid metabolism. In cells lacking RNase HI, replication initiates independently of DnaA and oriC, presumably at persisting R-loops. A similar mechanism was assumed for origin-independent synthesis in cells lacking RecG. However, recently we suggested that this synthesis initiates at intermediates resulting from replication fork fusions. Here we present data suggesting that in cells lacking RecG or RNase HI, origin-independent synthesis arises by different mechanisms, indicative of these two proteins having different roles in vivo. Our data support the idea that RNase HI processes R-loops, while RecG is required to process replication fork fusion intermediates. However, regardless of how origin-independent synthesis is initiated, a fraction of forks will proceed in an orientation opposite to normal. We show that the resulting head-on encounters with transcription threaten cell viability, especially if taking place in highly transcribed areas. Thus, despite their different functions, RecG and RNase HI are both important factors for maintaining replication control and orientation. Their absence causes severe replication problems, highlighting the advantages of the normal chromosome arrangement, which exploits a single origin to control the number of forks and their orientation relative to transcription, and a defined termination area to contain fork fusions. Any changes to this arrangement endanger cell cycle control, chromosome dynamics, and, ultimately, cell viability.

IMPORTANCE

Cell division requires unwinding of millions of DNA base pairs to generate the template for RNA transcripts as well as chromosome replication. As both processes use the same template, frequent clashes are unavoidable. To minimize the impact of these clashes, transcription and replication in bacteria follow the same directionality, thereby avoiding head-on collisions. This codirectionality is maintained by a strict regulation of where replication is started. We have used Escherichia coli as a model to investigate cells in which the defined location of replication initiation is compromised. In cells lacking either RNase HI or RecG, replication initiates away from the defined replication origin, and we discuss the different mechanisms by which this synthesis arises. In addition, the resulting forks proceed in a direction opposite to normal, thereby inducing head-on collisions between transcription and replication, and we show that the resulting consequences are severe enough to threaten the viability of cells.

摘要

未标记

在所有生物体中,染色体复制在复制机器于特定起始点的组装阶段受到调控。在大肠杆菌中,DnaA起始蛋白在oriC处调控复制叉的组装。这种调控可能会因核酸代谢缺陷而受到破坏。在缺乏核糖核酸酶H(RNase HI)的细胞中,复制独立于DnaA和oriC起始,推测是在持续存在的R环处起始。对于缺乏RecG的细胞中不依赖起始点的合成,也假定了类似的机制。然而,最近我们提出这种合成是在复制叉融合产生的中间体处起始。在此,我们呈现的数据表明,在缺乏RecG或RNase HI的细胞中,不依赖起始点的合成是通过不同机制产生的,这表明这两种蛋白在体内具有不同作用。我们的数据支持这样的观点,即RNase HI处理R环,而RecG是处理复制叉融合中间体所必需的。然而,无论不依赖起始点的合成如何起始,一部分复制叉会以与正常情况相反的方向进行。我们表明,由此产生的与转录的迎头相遇会威胁细胞活力,特别是如果发生在高转录区域。因此,尽管RecG和RNase HI功能不同,但它们都是维持复制控制和方向的重要因素。它们的缺失会导致严重的复制问题,凸显了正常染色体排列的优势,这种排列利用单个起始点来控制复制叉的数量及其相对于转录的方向,以及一个确定的终止区域来容纳复制叉融合。这种排列的任何改变都会危及细胞周期控制、染色体动态,最终危及细胞活力。

重要性

细胞分裂需要解开数百万个DNA碱基对,以生成RNA转录本以及染色体复制的模板。由于这两个过程使用相同的模板,频繁的冲突不可避免。为了尽量减少这些冲突的影响,细菌中的转录和复制遵循相同的方向性,从而避免迎头碰撞。这种共方向性通过对复制起始位置的严格调控得以维持。我们以大肠杆菌为模型,研究复制起始的确定位置受损的细胞。在缺乏RNase HI或RecG的细胞中,复制在远离确定的复制起始点处起始,我们讨论了这种合成产生的不同机制。此外,由此产生的复制叉以与正常情况相反的方向进行,从而在转录和复制之间引发迎头碰撞,并且我们表明由此产生的后果严重到足以威胁细胞的活力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eff9/4631800/ea2328459496/mbo0051525180001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验