van Wezel Gilles P, Mahr Kerstin, König Miriam, Traag Bjørn A, Pimentel-Schmitt Elisângela F, Willimek Andreas, Titgemeyer Fritz
Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
Mol Microbiol. 2005 Jan;55(2):624-36. doi: 10.1111/j.1365-2958.2004.04413.x.
We provide a functional and regulatory analysis of glcP, encoding the major glucose transporter of Streptomyces coelicolor A3(2). GlcP, a member of the Major Facilitator Superfamily (MFS) of bacterial and eucaryotic sugar permeases, was found to be encoded twice at two distinct loci, glcP1 and glcP2, located in the central core and in the variable right arm of the chromosome respectively. Heterologous expression of GlcP in Escherichia coli led to the full restoration of glucose fermentation to mutants lacking glucose transport activity. Biochemical analysis revealed an affinity constant in the low-micromolar range and substrate specificity for glucose and 2-deoxyglucose. Deletion of glcP1 but not glcP2 led to a drastic reduction in growth on glucose reflected by the loss of glucose uptake. This correlated with transcriptional analyses, which showed that glcP1 transcription was strongly inducible by glucose, while glcP2 transcripts were barely detectable. In conclusion, GlcP, which is the first glucose permease from high G+C Gram-positive bacteria characterized at the molecular level, represents the major glucose uptake system in S. coelicolor A3(2) that is indispensable for the high growth rate on glucose. It is anticipated that the activity of GlcP is linked to other glucose-mediated phenomena such as carbon catabolite repression, morphogenesis and antibiotic production.
我们对编码天蓝色链霉菌A3(2)主要葡萄糖转运蛋白的glcP进行了功能和调控分析。GlcP是细菌和真核生物糖通透酶的主要促进剂超家族(MFS)的成员,被发现分别在位于染色体中央核心区域的glcP1和位于可变右臂的glcP2这两个不同位点被编码两次。GlcP在大肠杆菌中的异源表达导致缺乏葡萄糖转运活性的突变体的葡萄糖发酵完全恢复。生化分析揭示了其在低微摩尔范围内的亲和常数以及对葡萄糖和2-脱氧葡萄糖的底物特异性。缺失glcP1而非glcP2导致葡萄糖摄取丧失,反映出在葡萄糖上生长急剧减少。这与转录分析相关,转录分析表明glcP1转录受葡萄糖强烈诱导,而glcP2转录本几乎检测不到。总之,GlcP是首个在分子水平上被表征的来自高G+C革兰氏阳性细菌的葡萄糖通透酶,它代表了天蓝色链霉菌A3(2)中主要的葡萄糖摄取系统,对于在葡萄糖上的高生长速率不可或缺。预计GlcP的活性与其他葡萄糖介导的现象如碳分解代谢物阻遏、形态发生和抗生素产生相关。