Suppr超能文献

在嗜盐碱甲烷球菌中进行的无标记诱变揭示了丙氨酸脱氢酶、丙氨酸消旋酶和丙氨酸通透酶的作用。

Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease.

作者信息

Moore Brian C, Leigh John A

机构信息

Department of Microbiology, University of Washington, Microbiology, Box 357242, Seattle, WA 98195-7242, USA.

出版信息

J Bacteriol. 2005 Feb;187(3):972-9. doi: 10.1128/JB.187.3.972-979.2005.

Abstract

Among the archaea, Methanococcus maripaludis has the unusual ability to use L- or D-alanine as a nitrogen source. To understand how this occurs, we tested the roles of three adjacent genes encoding homologs of alanine dehydrogenase, alanine racemase, and alanine permease. To produce mutations in these genes, we devised a method for markerless mutagenesis that builds on previously established genetic tools for M. maripaludis. The technique uses a negative selection strategy that takes advantage of the ability of the M. maripaludis hpt gene encoding hypoxanthine phosphoribosyltransferase to confer sensitivity to the base analog 8-azahypoxanthine. In addition, we developed a negative selection method to stably incorporate constructs into the genome at the site of the upt gene encoding uracil phosphoribosyltransferase. Mutants with in-frame deletion mutations in the genes for alanine dehydrogenase and alanine permease lost the ability to grow on either isomer of alanine, while a mutant with an in-frame deletion mutation in the gene for alanine racemase lost only the ability to grow on D-alanine. The wild-type gene for alanine dehydrogenase, incorporated into the upt site, complemented the alanine dehydrogenase mutation. Hence, the permease is required for the transport of either isomer, the dehydrogenase is specific for the L isomer, and the racemase converts the D isomer to the L isomer. Phylogenetic analysis indicated that all three genes had been acquired by lateral gene transfer from the low-moles-percent G+C gram-positive bacteria.

摘要

在古生菌中,沼泽甲烷球菌具有以L-丙氨酸或D-丙氨酸作为氮源的独特能力。为了解这一过程是如何发生的,我们测试了编码丙氨酸脱氢酶、丙氨酸消旋酶和丙氨酸通透酶同源物的三个相邻基因的作用。为了在这些基因中产生突变,我们设计了一种基于先前为沼泽甲烷球菌建立的遗传工具的无标记诱变方法。该技术采用负选择策略,利用编码次黄嘌呤磷酸核糖基转移酶的沼泽甲烷球菌hpt基因赋予对碱基类似物8-氮杂次黄嘌呤敏感性的能力。此外,我们开发了一种负选择方法,以将构建体稳定地整合到编码尿嘧啶磷酸核糖基转移酶的upt基因位点的基因组中。丙氨酸脱氢酶和丙氨酸通透酶基因发生框内缺失突变的突变体失去了在任何一种丙氨酸异构体上生长的能力,而丙氨酸消旋酶基因发生框内缺失突变的突变体仅失去了在D-丙氨酸上生长的能力。整合到upt位点的丙氨酸脱氢酶野生型基因弥补了丙氨酸脱氢酶突变。因此,通透酶是两种异构体转运所必需的,脱氢酶对L异构体具有特异性,消旋酶将D异构体转化为L异构体。系统发育分析表明,所有这三个基因都是通过横向基因转移从低摩尔百分比G+C革兰氏阳性细菌中获得的。

相似文献

3
Synthesis of optically active amino acids from alpha-keto acids with Escherichia coli cells expressing heterologous genes.
Appl Environ Microbiol. 1997 Dec;63(12):4651-6. doi: 10.1128/aem.63.12.4651-4656.1997.
4
Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis.
J Bacteriol. 2004 Oct;186(20):6956-69. doi: 10.1128/JB.186.20.6956-6969.2004.
5
Genetics in methanogens: transposon insertion mutagenesis of a Methanococcus maripaludis nifH gene.
J Bacteriol. 1995 Oct;177(20):5773-7. doi: 10.1128/jb.177.20.5773-5777.1995.
7
Characterization of energy-conserving hydrogenase B in Methanococcus maripaludis.
J Bacteriol. 2010 Aug;192(15):4022-30. doi: 10.1128/JB.01446-09. Epub 2010 May 28.
9
Function and regulation of glnA in the methanogenic archaeon Methanococcus maripaludis.
J Bacteriol. 1999 Jan;181(1):256-61. doi: 10.1128/JB.181.1.256-261.1999.

引用本文的文献

2
Markerless mutagenesis enables isoleucine biosynthesis solely from threonine in .
Microbiol Spectr. 2025 Jun 3;13(6):e0306824. doi: 10.1128/spectrum.03068-24. Epub 2025 Apr 17.
4
Origin of biogeographically distinct ecotypes during laboratory evolution.
Nat Commun. 2024 Aug 28;15(1):7451. doi: 10.1038/s41467-024-51759-y.
6
Teaching old dogs new tricks: genetic engineering methanogens.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0224723. doi: 10.1128/aem.02247-23. Epub 2024 Jun 10.
7
Proteomic and transcriptomic analysis of selenium utilization in .
mSystems. 2024 May 16;9(5):e0133823. doi: 10.1128/msystems.01338-23. Epub 2024 Apr 9.
8
Biochemical and genetic studies define the functions of methylthiotransferases in methanogenic and methanotrophic archaea.
Front Microbiol. 2023 Nov 23;14:1304671. doi: 10.3389/fmicb.2023.1304671. eCollection 2023.
9
Model Organisms To Study Methanogenesis, a Uniquely Archaeal Metabolism.
J Bacteriol. 2023 Aug 24;205(8):e0011523. doi: 10.1128/jb.00115-23. Epub 2023 Jul 17.

本文引用的文献

1
Incorporation of Exogenous Purines and Pyrimidines by Methanococcus voltae and Isolation of Analog-Resistant Mutants.
Appl Environ Microbiol. 1987 Aug;53(8):1822-6. doi: 10.1128/aem.53.8.1822-1826.1987.
2
Growth and plating efficiency of methanococci on agar media.
Appl Environ Microbiol. 1983 Jul;46(1):220-6. doi: 10.1128/aem.46.1.220-226.1983.
3
Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis.
J Bacteriol. 2004 Oct;186(20):6956-69. doi: 10.1128/JB.186.20.6956-6969.2004.
4
Two biosynthetic pathways for aromatic amino acids in the archaeon Methanococcus maripaludis.
J Bacteriol. 2004 Aug;186(15):4940-50. doi: 10.1128/JB.186.15.4940-4950.2004.
5
Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system.
J Bacteriol. 2004 May;186(10):3187-94. doi: 10.1128/JB.186.10.3187-3194.2004.
7
Gene organization: selection, selfishness, and serendipity.
Annu Rev Microbiol. 2003;57:419-40. doi: 10.1146/annurev.micro.57.030502.090816.
8
A side reaction of alanine racemase: transamination of cycloserine.
Biochemistry. 2003 May 20;42(19):5775-83. doi: 10.1021/bi027022d.
10
A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis.
Mol Microbiol. 2003 Jan;47(1):235-46. doi: 10.1046/j.1365-2958.2003.03293.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验