Kilner James M, Kiebel Stefan J, Friston Karl J
The Wellcome Department of Imaging Neuroscience, Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK.
Neurosci Lett. 2005 Feb 21;374(3):174-8. doi: 10.1016/j.neulet.2004.10.052.
The analysis of electrophysiological data often produces results that are continuous in one or more dimensions, e.g., time-frequency maps, peri-stimulus time histograms, and cross-correlation functions. Classical inferences made on the ensuing statistical maps must control family wise error (FWE) when searching across the map's dimensions. In this paper, we borrow multiple comparisons procedures, established in neuroimaging, and apply them to electrophysiological data. These procedures use random field theory (RFT) to adjust p-values from statistics that are functions of time and/or frequency. This RFT adjustment for continuous statistical processes plays the same role as a Bonnferonni adjustment in the context of discrete statistical tests. Here, by analysing the time-frequency decompositions of single channel EEG data we show that RFT adjustments can be used in the analysis of electrophysiological data and illustrate the advantages of this method over existing approaches.
对电生理数据的分析常常会产生在一个或多个维度上连续的结果,例如时频图、刺激周围时间直方图和互相关函数。在对由此产生的统计图进行经典推断时,在跨图的维度进行搜索时必须控制族系误差(FWE)。在本文中,我们借鉴了神经成像中建立的多重比较程序,并将其应用于电生理数据。这些程序使用随机场理论(RFT)来调整来自作为时间和/或频率函数的统计量的p值。这种对连续统计过程的RFT调整在离散统计检验的背景下与邦费罗尼调整起着相同的作用。在这里,通过分析单通道脑电图数据的时频分解,我们表明RFT调整可用于电生理数据的分析,并说明了该方法相对于现有方法的优势。