Suppr超能文献

黄石地热生态系统中的氢与生物能量学

Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem.

作者信息

Spear John R, Walker Jeffrey J, McCollom Thomas M, Pace Norman R

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.

出版信息

Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2555-60. doi: 10.1073/pnas.0409574102. Epub 2005 Jan 25.

Abstract

The geochemical energy budgets for high-temperature microbial ecosystems such as occur at Yellowstone National Park have been unclear. To address the relative contributions of different geochemistries to the energy demands of these ecosystems, we draw together three lines of inference. We studied the phylogenetic compositions of high-temperature (>70 degrees C) communities in Yellowstone hot springs with distinct chemistries, conducted parallel chemical analyses, and carried out thermodynamic modeling. Results of extensive molecular analyses, taken with previous results, show that most microbial biomass in these systems, as reflected by rRNA gene abundance, is comprised of organisms of the kinds that derive energy for primary productivity from the oxidation of molecular hydrogen, H2. The apparent dominance by H2-metabolizing organisms indicates that H2 is the main source of energy for primary production in the Yellowstone high-temperature ecosystem. Hydrogen concentrations in the hot springs were measured and found to range up to >300 nM, consistent with this hypothesis. Thermodynamic modeling with environmental concentrations of potential energy sources also is consistent with the proposed microaerophilic, hydrogen-based energy economy for this geothermal ecosystem, even in the presence of high concentrations of sulfide.

摘要

像黄石国家公园中存在的高温微生物生态系统的地球化学能量收支情况一直不明朗。为了确定不同地球化学过程对这些生态系统能量需求的相对贡献,我们综合了三条推理线索。我们研究了黄石温泉中具有不同化学组成的高温(>70摄氏度)群落的系统发育组成,进行了平行化学分析,并开展了热力学建模。广泛的分子分析结果与先前的结果表明,这些系统中的大多数微生物生物量(以rRNA基因丰度衡量)由通过分子氢(H2)氧化获取初级生产力能量的生物组成。以H2代谢的生物明显占主导地位,这表明H2是黄石高温生态系统初级生产的主要能量来源。对温泉中的氢浓度进行了测量,发现其高达>300 nM,这与该假设相符。利用潜在能量源的环境浓度进行的热力学建模也与为这个地热生态系统提出的微需氧、基于氢的能量经济相符,即使存在高浓度的硫化物。

相似文献

1
Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem.
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2555-60. doi: 10.1073/pnas.0409574102. Epub 2005 Jan 25.
2
Relative importance of H2 and H2S as energy sources for primary production in geothermal springs.
Appl Environ Microbiol. 2008 Sep;74(18):5802-8. doi: 10.1128/AEM.00852-08. Epub 2008 Jul 18.
3
4
Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment.
Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1609-13. doi: 10.1073/pnas.91.5.1609.
8
Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem.
Appl Environ Microbiol. 2006 Sep;72(9):6257-70. doi: 10.1128/AEM.00574-06.
9
Phylogenetic perspective on microbial life in hydrothermal ecosystems, past and present.
Ciba Found Symp. 1996;202:24-32; discussion 32-9. doi: 10.1002/9780470514986.ch2.

引用本文的文献

3
Microbial ecology of serpentinite-hosted ecosystems.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf029.
4
Metagenomic analysis sheds light on the mixotrophic lifestyle of bacterial phylum .
Imeta. 2024 Nov 23;3(6):e249. doi: 10.1002/imt2.249. eCollection 2024 Dec.
5
Draft genome sequence of a halophilic, putative hydrocarbon-degrading sp. strain KWT2.
Microbiol Resour Announc. 2025 Jan 16;14(1):e0102324. doi: 10.1128/mra.01023-24. Epub 2024 Dec 10.
6
Back flux during anaerobic oxidation of butane support archaea-mediated alkanogenesis.
Nat Commun. 2024 Nov 7;15(1):9628. doi: 10.1038/s41467-024-53932-9.
7
Covariation of hot spring geochemistry with microbial genomic diversity, function, and evolution.
Nat Commun. 2024 Aug 29;15(1):7506. doi: 10.1038/s41467-024-51841-5.
8
Trace gas oxidation sustains energy needs of a thermophilic archaeon at suboptimal temperatures.
Nat Commun. 2024 Apr 15;15(1):3219. doi: 10.1038/s41467-024-47324-2.
9
We have a community problem.
J Bacteriol. 2024 Apr 18;206(4):e0007324. doi: 10.1128/jb.00073-24. Epub 2024 Mar 26.
10
Mode of carbon and energy metabolism shifts lipid composition in the thermoacidophile .
Appl Environ Microbiol. 2024 Feb 21;90(2):e0136923. doi: 10.1128/aem.01369-23. Epub 2024 Jan 18.

本文引用的文献

1
Geomicrobiology of deep-sea hydrothermal vents.
Science. 1985 Aug 23;229(4715):717-25. doi: 10.1126/science.229.4715.717.
2
Minimum threshold for hydrogen metabolism in methanogenic bacteria.
Appl Environ Microbiol. 1985 Jun;49(6):1530-1. doi: 10.1128/aem.49.6.1530-1531.1985.
3
Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments.
Appl Environ Microbiol. 1982 Jun;43(6):1373-9. doi: 10.1128/aem.43.6.1373-1379.1982.
4
Intermediary metabolism of organic matter in the sediments of a eutrophic lake.
Appl Environ Microbiol. 1982 Mar;43(3):552-60. doi: 10.1128/aem.43.3.552-560.1982.
5
Bias and artifacts in multitemplate polymerase chain reactions (PCR).
J Biosci Bioeng. 2003;96(4):317-23. doi: 10.1016/S1389-1723(03)90130-7.
6
H2-rich fluids from serpentinization: geochemical and biotic implications.
Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12818-23. doi: 10.1073/pnas.0405289101. Epub 2004 Aug 23.
8
Geographical isolation in hot spring cyanobacteria.
Environ Microbiol. 2003 Aug;5(8):650-9. doi: 10.1046/j.1462-2920.2003.00460.x.
9
Culture-independent molecular analysis of microbial constituents of the healthy human outer ear.
J Clin Microbiol. 2003 Jan;41(1):295-303. doi: 10.1128/JCM.41.1.295-303.2003.
10
Soil microbial community structure across a thermal gradient following a geothermal heating event.
Appl Environ Microbiol. 2002 Dec;68(12):6300-9. doi: 10.1128/AEM.68.12.6300-6309.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验