Suppr超能文献

高温化能自养系统的宏基因组揭示了地球化学因素对微生物群落结构和功能的控制作用。

Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function.

机构信息

Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America.

出版信息

PLoS One. 2010 Mar 19;5(3):e9773. doi: 10.1371/journal.pone.0009773.

Abstract

The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14-15,000 Sanger reads per site) was obtained for five high-temperature (>65 degrees C) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP) that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3) Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation) provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, Fe, O2) control microbial community structure and function in YNP geothermal springs.

摘要

黄石火山口拥有地球上数量最多、种类最多的地热系统,形成了广泛的独特高温环境,这些环境中栖息着各种根深蒂固、研究较少的古菌、细菌和真核生物。在高温环境中遇到的极端温度和化学条件通常会导致微生物多样性大大低于其他陆地栖息地,为研究本地微生物群落的结构和功能以及建立假定代谢物与元素循环之间的联系提供了巨大的机会。对从黄石国家公园(YNP)地热泉(或池)中采集的五个高温(> 65°C)化能微生物群落(每个地点获得 14-15000 个 Sanger 读取的宏基因组序列)进行了宏基因组测序。这些微生物群落的地球化学性质差异很大,包括 pH 值、溶解的硫化物、溶解氧和亚铁。宏基因组数据显示,与这些地球化学环境相关的主要门之间存在显著差异。在低 pH 值环境中,硫杆菌目(Sulfolobales)的新成员占优势,而其他古菌,包括远亲的泉古菌目(Thermoproteales)和脱硫球菌目(Desulfurococcales)种群,在缺氧的硫化物沉积物中占优势。在酸性(pH 3)Fe-水羟化物垫中,有几个新的古菌群得到了很好的代表,其中 O2 流入量增加伴随着古菌多样性的增加。S 氧化还原、H2 氧化和需氧呼吸(末端氧化)的重要基因和途径的存在或缺失,为地热系统中本地生物的代谢策略提供了深入了解。对宏基因组序列数据的多途径和蛋白质特异性功能分析证实了系统发育分析的结果,并清楚地表明了不同地点的代谢潜力存在显著差异。参与电子传递的功能基因的分布与地球化学参数(例如 pH 值、硫化物、Fe、O2)控制 YNP 地热泉微生物群落结构和功能的假说一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa7d/2841643/41e98fad00ce/pone.0009773.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验