Lu Richard, Limón Ana, Ghory Hina Z, Engelman Alan
Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney St. Boston, MA 02115, USA.
J Virol. 2005 Feb;79(4):2493-505. doi: 10.1128/JVI.79.4.2493-2505.2005.
The catalytic core domain (CCD) of human immunodeficiency virus type 1 (HIV-1) integrase (IN) harbors the enzyme active site and binds viral and chromosomal DNA during integration. Thirty-five CCD mutant viruses were constructed, paying particular attention to conserved residues in the Phe(139)-Gln(146) flexible loop and abutting Ser(147)-Val(165) amphipathic alpha helix that were implicated from previous in vitro work as important for DNA binding. Defective viruses were typed as class I mutants (specifically blocked at integration) or pleiotropic class II mutants (additional particle assembly and/or reverse transcription defects). Whereas HIV-1(P145A) and HIV-1(Q146K) grew like the wild type, HIV-1(N144K) and HIV-1(Q148L) were class I mutants, reinforcing previous results that Gln-148 is important for DNA binding and uncovering for the first time an important role for Asn-144 in integration. HIV-1(Q62K), HIV-1(H67E), HIV-1(N120K), and HIV-1(N155K) were also class I mutants, supporting findings that Gln-62 and Asn-120 interact with viral and target DNA, respectively, and suggesting similar integration-specific roles for His-67 and Asn-155. Although results from complementation analyses established that IN functions as a multimer, the interplay between active-site and CCD DNA binding functions was unknown. By using Vpr-IN complementation, we determined that the CCD protomer that catalyzes integration also preferentially binds to viral and target DNA. We additionally characterized E138K as an intramolecular suppressor of Gln-62 mutant virus and IN. The results of these analyses highlight conserved CCD residues that are important for HIV-1 replication and integration and define the relationship between DNA binding and catalysis that occurs during integration in vivo.
人类免疫缺陷病毒1型(HIV-1)整合酶(IN)的催化核心结构域(CCD)含有酶活性位点,并在整合过程中结合病毒和染色体DNA。构建了35种CCD突变病毒,特别关注苯丙氨酸(139)-谷氨酰胺(146)柔性环以及相邻的丝氨酸(147)-缬氨酸(165)两亲性α螺旋中的保守残基,先前的体外研究表明这些残基对DNA结合很重要。缺陷病毒被分类为I类突变体(在整合时被特异性阻断)或多效性II类突变体(存在额外的颗粒组装和/或逆转录缺陷)。虽然HIV-1(P145A)和HIV-1(Q146K)的生长情况与野生型相似,但HIV-1(N144K)和HIV-1(Q148L)是I类突变体,这强化了先前的结果,即谷氨酰胺-148对DNA结合很重要,并首次揭示了天冬酰胺-144在整合中的重要作用。HIV-1(Q62K)、HIV-1(H67E)、HIV-1(N120K)和HIV-1(N155K)也是I类突变体,支持了谷氨酰胺-62和天冬酰胺-120分别与病毒和靶DNA相互作用的发现,并表明组氨酸-67和天冬酰胺-155在整合中具有类似的特定作用。尽管互补分析的结果确定IN作为多聚体发挥作用,但活性位点和CCD DNA结合功能之间的相互作用尚不清楚。通过使用Vpr-IN互补,我们确定催化整合的CCD原体也优先结合病毒和靶DNA。我们还将E138K鉴定为谷氨酰胺-62突变病毒和IN的分子内抑制因子。这些分析结果突出了对HIV-1复制和整合很重要的保守CCD残基,并定义了体内整合过程中发生的DNA结合与催化之间的关系。