Vernier Philippe, Moret Frederic, Callier Sophie, Snapyan Marina, Wersinger Christophe, Sidhu Anita
Development, Evolution, Plasticity of the Nervous System, Institute of Neurobiology A. Fessard, CNRS, Gif-sur-Yvette, France.
Ann N Y Acad Sci. 2004 Dec;1035:231-49. doi: 10.1196/annals.1332.015.
Parkinson's disease (PD) is, to a large extent, specific to the human species. Most symptoms are the consequence of the preferential degeneration of the dopamine-synthesizing cells of the mesostriatal-mesocortical neuronal pathway. Reasons for that can be traced back to the evolutionary mechanisms that shaped the dopamine neurons in humans. In vertebrates, dopamine-containing neurons and nuclei do not exhibit homogenous phenotypes. In this respect, mesencephalic dopamine neurons of the substantia nigra and ventral tegmental area are characterized by a molecular combination (tyrosine hydroxylase, aromatic amino acid decarboxylase, monoamine oxidase, vesicular monoamine transporter, dopamine transporter--to name a few), which is not found in other dopamine-containing neurons of the vertebrate brain. In addition, the size of these mesencephalic DA nuclei is tremendously expanded in humans as compared to other vertebrates. Differentiation of the mesencephalic neurons during development depends on genetic mechanisms, which also differ from those of other dopamine nuclei. In contrast, pathophysiological approaches to PD have highlighted the role of ubiquitously expressed molecules such as a-synuclein, parkin, and microtubule-associated proteins. We propose that the peculiar phenotype of the dopamine mesencephalic neurons, which has been selected during vertebrate evolution and reshaped in the human lineage, has also rendered these neurons particularly prone to oxidative stress, and thus, to the fairly specific neurodegeneration of PD. Numerous evidence has been accumulated to demonstrate that perturbed regulation of DAT-dependent dopamine uptake, DAT-dependent accumulation of toxins, dysregulation of TH activity as well as high sensitivity of DA mesencephalic neurons to oxidants are key components of the neurodegeneration process of PD. This view points to the contribution of nonspecific mechanisms (alpha-synuclein aggregation) in a highly specific cellular environment (the dopamine mesencephalic neurons) and provides a robust framework to develop novel and rational therapeutic schemes in PD.
帕金森病(PD)在很大程度上是人类特有的疾病。大多数症状是中脑纹状体 - 中脑皮质神经元通路中多巴胺合成细胞优先退化的结果。其原因可追溯到塑造人类多巴胺神经元的进化机制。在脊椎动物中,含多巴胺的神经元和核团不表现出同质的表型。在这方面,黑质和腹侧被盖区的中脑多巴胺神经元具有一种分子组合特征(酪氨酸羟化酶、芳香族氨基酸脱羧酶、单胺氧化酶、囊泡单胺转运体、多巴胺转运体等等),而在脊椎动物脑的其他含多巴胺神经元中并未发现这种组合。此外,与其他脊椎动物相比,人类这些中脑多巴胺核团的大小极大地扩展了。中脑神经元在发育过程中的分化取决于遗传机制,这也与其他多巴胺核团的遗传机制不同。相比之下,PD的病理生理学研究方法突出了诸如α - 突触核蛋白、帕金蛋白和微管相关蛋白等广泛表达分子的作用。我们认为,多巴胺中脑神经元的特殊表型在脊椎动物进化过程中被选择并在人类谱系中重塑,这也使这些神经元特别容易受到氧化应激的影响,从而导致相当特异性的PD神经退行性变。已经积累了大量证据表明,DAT依赖的多巴胺摄取调节紊乱、DAT依赖的毒素积累、TH活性失调以及多巴胺中脑神经元对氧化剂的高敏感性是PD神经退行性变过程的关键组成部分。这种观点指出了非特异性机制(α - 突触核蛋白聚集)在高度特异性细胞环境(多巴胺中脑神经元)中的作用,并为开发针对PD的新型合理治疗方案提供了一个有力的框架。