Suppr超能文献

兔视网膜AII无长突细胞中的缝隙连接调节机制。

Gap junctional regulatory mechanisms in the AII amacrine cell of the rabbit retina.

作者信息

Xia Xiao-Bo, Mills Stephen L

机构信息

Department of Ophthalmology and Visual Science, University of Texas at Houston--Health Science Center, Houston, TX 77030, USA.

出版信息

Vis Neurosci. 2004 Sep-Oct;21(5):791-805. doi: 10.1017/S0952523804215127.

Abstract

Gap junctions are commonplace in retina, often between cells of the same morphological type, but sometimes linking different cell types. The strength of coupling between cells derives from the properties of the connexins, but also is regulated by the intracellular environment of each cell. We measured the relative coupling of two different gap junctions made by AII amacrine cells of the rabbit retina. Permeability to the tracer Neurobiotin was measured at different concentrations of the neuromodulators dopamine, nitric oxide, or cyclic adenosine monophosphate (cAMP) analogs. Diffusion coefficients were calculated separately for the gap junctions between pairs of AII amacrine cells and for those connecting AII amacrine cells with ON cone bipolar cells. Increased dopamine caused diffusion rates to decline more rapidly across the AII-AII gap junctions than across the AII-bipolar cell gap junctions. The rate of decline at these sites was well fit by a model proposing that dopamine modulates two independent gates in AII-AII channels, but only a single gate on the AII side of the AII-bipolar channel. However, a membrane-permeant cAMP agonist modulated both types of channel equally. Therefore, the major regulator of channel closure in this network is the local cAMP concentration within each cell, as regulated by dopamine, rather than different cAMP sensitivity of their respective gates. In contrast, nitric oxide preferentially reduced AII-bipolar cell permeabilities. Coupling from AII amacrine cells to the different bipolar cell subtypes was differentially affected by dopamine, indicating that light adaptation acting via dopamine release alters network coupling properties in multiple ways.

摘要

缝隙连接在视网膜中很常见,通常存在于相同形态类型的细胞之间,但有时也连接不同的细胞类型。细胞间耦合的强度源于连接蛋白的特性,但也受每个细胞的细胞内环境调节。我们测量了兔视网膜AII无长突细胞形成的两种不同缝隙连接的相对耦合。在不同浓度的神经调质多巴胺、一氧化氮或环磷酸腺苷(cAMP)类似物存在的情况下,测量了示踪剂神经生物素的通透性。分别计算了AII无长突细胞对之间以及连接AII无长突细胞与视锥ON双极细胞的缝隙连接的扩散系数。多巴胺浓度增加导致AII - AII缝隙连接间的扩散速率比AII - 双极细胞缝隙连接间的下降更快。这些位点的下降速率与一个模型拟合得很好,该模型提出多巴胺调节AII - AII通道中的两个独立门控,但仅调节AII - 双极通道AII侧的一个门控。然而,一种膜通透性cAMP激动剂对两种类型的通道调节作用相同。因此,该网络中通道关闭的主要调节因子是每个细胞内由多巴胺调节的局部cAMP浓度,而不是其各自门控对cAMP的不同敏感性。相比之下,一氧化氮优先降低AII - 双极细胞的通透性。多巴胺对AII无长突细胞与不同双极细胞亚型之间的耦合有不同影响,这表明通过多巴胺释放起作用的光适应以多种方式改变网络耦合特性。

相似文献

1
Gap junctional regulatory mechanisms in the AII amacrine cell of the rabbit retina.
Vis Neurosci. 2004 Sep-Oct;21(5):791-805. doi: 10.1017/S0952523804215127.
2
Differential properties of two gap junctional pathways made by AII amacrine cells.
Nature. 1995 Oct 26;377(6551):734-7. doi: 10.1038/377734a0.
3
Coupling from AII amacrine cells to ON cone bipolar cells is bidirectional.
J Comp Neurol. 2001 Sep 3;437(4):408-22. doi: 10.1002/cne.1292.
4
Gap junctions between AII amacrine cells and calbindin-positive bipolar cells in the rabbit retina.
Vis Neurosci. 1999 Nov-Dec;16(6):1181-9. doi: 10.1017/s0952523899166173.
6
Dopaminergic modulation of tracer coupling in a ganglion-amacrine cell network.
Vis Neurosci. 2007 Jul-Aug;24(4):593-608. doi: 10.1017/S0952523807070575. Epub 2007 Aug 22.
7
Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina.
J Neurosci. 1992 Dec;12(12):4911-22. doi: 10.1523/JNEUROSCI.12-12-04911.1992.
8
Light-induced modulation of coupling between AII amacrine cells in the rabbit retina.
Vis Neurosci. 1997 May-Jun;14(3):565-76. doi: 10.1017/s0952523800012220.
9
A series of biotinylated tracers distinguishes three types of gap junction in retina.
J Neurosci. 2000 Nov 15;20(22):8629-36. doi: 10.1523/JNEUROSCI.20-22-08629.2000.

引用本文的文献

1
Analytical methods for assessing retinal cell coupling using cut-loading.
PLoS One. 2022 Jul 19;17(7):e0271744. doi: 10.1371/journal.pone.0271744. eCollection 2022.
2
PTEN Expression Regulates Gap Junction Connectivity in the Retina.
Front Neuroanat. 2021 May 20;15:629244. doi: 10.3389/fnana.2021.629244. eCollection 2021.
3
Regulatory Roles of Metabotropic Glutamate Receptors on Synaptic Communication Mediated by Gap Junctions.
Neuroscience. 2021 Feb 21;456:85-94. doi: 10.1016/j.neuroscience.2020.06.034. Epub 2020 Jun 30.
4
Network Architecture of Gap Junctional Coupling among Parallel Processing Channels in the Mammalian Retina.
J Neurosci. 2020 Jun 3;40(23):4483-4511. doi: 10.1523/JNEUROSCI.1810-19.2020. Epub 2020 Apr 24.
6
Dopamine D1 receptor activation reduces local inner retinal inhibition to light-adapted levels.
J Neurophysiol. 2019 Apr 1;121(4):1232-1243. doi: 10.1152/jn.00448.2018. Epub 2019 Feb 6.
7
Scaling Our World View: How Monoamines Can Put Context Into Brain Circuitry.
Front Cell Neurosci. 2018 Dec 20;12:506. doi: 10.3389/fncel.2018.00506. eCollection 2018.
8
Distinct Co-Modulation Rules of Synapses and Voltage-Gated Currents Coordinate Interactions of Multiple Neuromodulators.
J Neurosci. 2018 Oct 3;38(40):8549-8562. doi: 10.1523/JNEUROSCI.1117-18.2018. Epub 2018 Aug 20.
9
Motor patterns of the small intestine explained by phase-amplitude coupling of two pacemaker activities: the critical importance of propagation velocity.
Am J Physiol Cell Physiol. 2015 Sep 15;309(6):C403-14. doi: 10.1152/ajpcell.00414.2014. Epub 2015 Jul 1.
10
Electrical synapses and their functional interactions with chemical synapses.
Nat Rev Neurosci. 2014 Apr;15(4):250-63. doi: 10.1038/nrn3708. Epub 2014 Mar 12.

本文引用的文献

1
Dynamics of spiking neurons connected by both inhibitory and electrical coupling.
J Comput Neurosci. 2003 May-Jun;14(3):283-309. doi: 10.1023/a:1023265027714.
3
Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina.
J Neurosci. 2002 Dec 15;22(24):10558-66. doi: 10.1523/JNEUROSCI.22-24-10558.2002.
4
Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina.
Neuron. 2002 Nov 14;36(4):703-12. doi: 10.1016/s0896-6273(02)01046-2.
5
AII (Rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina.
Neuron. 2002 Mar 14;33(6):935-46. doi: 10.1016/s0896-6273(02)00609-8.
6
Emerging issues of connexin channels: biophysics fills the gap.
Q Rev Biophys. 2001 Aug;34(3):325-472. doi: 10.1017/s0033583501003705.
7
Electrical synapses in the thalamic reticular nucleus.
J Neurosci. 2002 Feb 1;22(3):1002-9. doi: 10.1523/JNEUROSCI.22-03-01002.2002.
8
Coupling from AII amacrine cells to ON cone bipolar cells is bidirectional.
J Comp Neurol. 2001 Sep 3;437(4):408-22. doi: 10.1002/cne.1292.
9
Rod pathways in the mammalian retina use connexin 36.
J Comp Neurol. 2001 Jul 30;436(3):336-50.
10
The generation of oscillations in networks of electrically coupled cells.
Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):8095-100. doi: 10.1073/pnas.131116898. Epub 2001 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验