Lewis Timothy J, Rinzel John
Center for Neural Science and Courant Institute for Mathematical Science, New York University, 4 Washington Place, Rm 809, NY 10003, USA.
J Comput Neurosci. 2003 May-Jun;14(3):283-309. doi: 10.1023/a:1023265027714.
We study the dynamics of a pair of intrinsically oscillating leaky integrate-and-fire neurons (identical and noise-free) connected by combinations of electrical and inhibitory coupling. We use the theory of weakly coupled oscillators to examine how synchronization patterns are influenced by cellular properties (intrinsic frequency and the strength of spikes) and coupling parameters (speed of synapses and coupling strengths). We find that, when inhibitory synapses are fast and the electrotonic effect of the suprathreshold portion of the spike is large, increasing the strength of weak electrical coupling promotes synchrony. Conversely, when inhibitory synapses are slow and the electrotonic effect of the suprathreshold portion of the spike is small, increasing the strength of weak electrical coupling promotes antisynchrony (see Fig. 10). Furthermore, our results indicate that, given a fixed total coupling strength, either electrical coupling alone or inhibition alone is better at enhancing neural synchrony than a combination of electrical and inhibitory coupling. We also show that these results extend to moderate coupling strengths.
我们研究了一对通过电耦合和抑制性耦合组合连接的具有内在振荡特性的漏电积分发放神经元(相同且无噪声)的动力学。我们使用弱耦合振荡器理论来研究同步模式如何受到细胞特性(固有频率和尖峰强度)和耦合参数(突触速度和耦合强度)的影响。我们发现,当抑制性突触快速且尖峰阈上部分的电紧张效应较大时,增加弱电耦合强度会促进同步。相反,当抑制性突触缓慢且尖峰阈上部分的电紧张效应较小时,增加弱电耦合强度会促进反同步(见图10)。此外,我们的结果表明,在总耦合强度固定的情况下,单独的电耦合或单独的抑制在增强神经同步方面比电耦合和抑制性耦合的组合更好。我们还表明,这些结果扩展到中等耦合强度。