Ghaly A E, Kamal M, Correia L R
Department of Biological Engineering, Dalhousie University, P.O. Box 1000, Halifax, Nova Scotia, Canada B3J 2X4.
Bioresour Technol. 2005 Jul;96(10):1143-52. doi: 10.1016/j.biortech.2004.09.027. Epub 2004 Dec 2.
A mathematical model describing the kinetics of continuous production of single cell protein from cheese whey using Kluyveromyces fragilis was developed from the basic principles of mass balance. The model takes into account the substrate utilization for growth and maintenance and the effect of substrate concentration and cell death rate on the net cell growth and substrate utilization during the fermentation process. A lactose concentration below 1.91 g/L limited growth of yeast cells whereas a lactose concentration above 75 g/L inhibited the growth of the yeast. The model was tested using experimental data obtained from a continuous system operated at various retention times (12, 18 and 24 h), mixing speeds (200, 400 and 600 rpm) and air flow rates (1 and 3 vvm). The model was capable of predicting the effluent cell and substrate concentrations with R2 ranging from 0.95 to 0.99. The viable cell mass and lactose consumption ranged from 1.3 to 34.3 g/L and from 74.31% to 99.02%, respectively. A cell yield of 0.74 g cell/g lactose (close to the stoichiometric value of 0.79 g cell/g lactose) was achieved at the 12 h retention time-3 vvm air flow rate-600 rpm mixing speed combination. The total biomass output (viable and dead cells) at this combination was 37 g/L.
基于质量平衡的基本原理,建立了一个数学模型,用于描述利用脆壁克鲁维酵母从奶酪乳清中连续生产单细胞蛋白的动力学过程。该模型考虑了底物用于生长和维持的情况,以及底物浓度和细胞死亡率对发酵过程中净细胞生长和底物利用的影响。乳糖浓度低于1.91 g/L会限制酵母细胞的生长,而乳糖浓度高于75 g/L则会抑制酵母的生长。使用从连续系统中获得的实验数据对该模型进行了测试,该连续系统在不同的保留时间(12、18和24小时)、混合速度(200、400和600转/分钟)和空气流速(1和3体积比每分钟)下运行。该模型能够预测流出液中的细胞和底物浓度,R2范围为0.95至0.99。活细胞质量和乳糖消耗量分别为1.3至34.3 g/L和74.31%至99.02%。在12小时保留时间 - 3体积比每分钟空气流速 - 600转/分钟混合速度的组合下,细胞产率达到0.74 g细胞/g乳糖(接近化学计量值0.79 g细胞/g乳糖)。此组合下的总生物量产量(活细胞和死细胞)为37 g/L。